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Preface

These lecture notes are intended to supplement the lectures and other materials
in the Microeconomics for Business Decision Making course at the Haas School
of Business.

A Word on Notation

Various typographic conventions are used to help guide you through this text.
Text that looks like this is an important definition. On the screen or printed

using a color printer, such definitions should appear blue.

Notes in margins:
These denote
important
“takeaways.”The

�
symbol in the margin denotes a paragraph that may be hard to follow

and, thus, requires particularly close attention (not that you should read any of
this text without paying close attention). On rare occasions, a paragraph might

be so difficult as to warrant a
��

.
The OPT symbol at the beginning of certain footnotes indicates that the

reading the footnote is optional .

The symbol
∫
dx in the margin denotes a section that uses calculus. Ob-

serve that such sections are also indented relative to the rest of the text. Some
technical footnotes are also prefaced with

∫
dx . It is understood that not ev-

eryone is comfortable with calculus and, for those who aren’t, I simply ask that
you skim those sections and make note of the main conclusions. You may also
wish to read through Appendix A3. There is no expectation that every student
will fully grasp the details of the analysis in those sections that employ calcu-
lus. When using calculus, prime indicate the derivatives of functions. Hence,
for instance, the derivative of f (·) would be represented as f ′(·). Occasionally,
the dy/dx style of notation will be used for derivatives.

A Word on Currency

As a rule, I will refer to monetary amounts as dollars. Unless I’m citing
actual data, there is nothing in these notes specific to dollars. The analysis is
the same whether the monetary amounts are dollars, euros, pesos, pounds,
yen, or what have you.

For those who feel I’m being too American-centric in using dollars, note I
didn’t specify which dollars. For all you know, I have Australian, Canadian, or
Hong Kong dollars in mind.

xi



xii Preface

A Word on the Appendices

There are two sets of appendices. The “A” appendices review basic algebra,
solving equations, and calculus. The “B” appendices consider basic probability.
Reading them is optional. Even though reading them is optional, this doesn’t
mean that using the mathematics they contain is necessarily optional. If, there-
fore, you feel rusty with respect to your math or probability skills, you should
probably read through them. To the best of my knowledge, no harm will come
to you if you do.



Fundamentals of
Problem Solving &

Decision Theory 1
Many years ago, Greg Wolfson, a former student, and his wife were in the
Caribbean as a hurrican. Understandably, they were nervous about the pos-
sibility of being stuck on the Turks and Caicos Islands during what looked
like one of the worst storms of the century. Should they stay on the Islands
or should they try to make it to Miami on route back home? If they stayed
and the hurricane hit the Islands, then they faced having their vacation ruined
or worse. If they left, then they gave up the rest of their vacation, incurred
additional costs of getting last-minute plane tickets, and ran the risk of being
caught in the hurricane while in Miami. Fortunately, Greg had studied deci-
sion theory. Decision theory helped Greg and his wife to think systematically
through their decision problem—stay or flee—and reach their best decision.
This turned out to be “stay,” and a good thing too: While Miami was being
battered by Hurricane Andrew, Greg and his wife were on a Hobie Cat, sailing
the lovely turquoise waters off the Turks and Caicos Islandsanother MBA A

success story!
Decision theory is a set of tools for deciding “which.” For example, Greg

and his wife were deciding which would be the better course of action for them,
stay or flee. These tools help by formalizing your decision making. They help
you recognize the alternatives available to you; they help you see what ad-
ditional information would be useful in reaching a decision; and they make
you aware of the assumptions or conditions that are critical to the decision you
make.

A word of caution: As powerful as these tools are, they are not a substitute
for your own thinking. Rather, they are aids to your thinking. Put another
way, they are not magic formulæthat can make your decisions for you (which
is just as well, since otherwise someone would program a computer with them,
which would likely do you out of a job).

The First Rule: Know Your
Problem 1.1

Before you can solve a problem, you have to know what it is. This may seem
so obvious that it hardly warrants mention. Obvious though it may be, the
truth is that people aren’t always that good at identifying what the problem is.
This may surprise you—after all, you’ve been solving problems in and out of
school for as long as you can remember. However, most of the problems we
solve in school (and life) have been given to us. We’re asked to solve problem

1



2 Chapter 1: Problem Solving & Decision Theory

that someone else has posed. But part of good management is identifying the
relevant problems.

An example may help to illustrate the issue.

Example 1 [Sterling Chemicals]: Sterling Chemicals, Inc. was founded
in  in a $213 million leveraged buyout of Monsanto Corporation’s
Texas City plant.1 The plant is located on Galveston Bay and manufac-
tures seven commodity chemicals and their coproducts. The plant has the
world’s largest styrene monomer unit. It is the only domestic producer
of synthetic lactic acid and tertiary-butylamine. In , its first year of
operation, Sterling employed 950 people and had sales of $413 million.

At Sterling’s Texas City plant, setting up scaffolding is the first task in
most repair and maintenance jobs. If the required scaffolding is not avail-
able, the job falls behind schedule and workers end up waiting rather than
working. Currently, scaffolding is available for only 43% of scheduled jobs.

A carpenter with fourteen years of experience described the problem
as follows:

Carpenters always complained about not being able to find enough
scaffolding. The shortages were so bad that we were spending
more time trying to find scaffolding than we spent erecting it.
The necessary scaffolding was never at the scaffolding storage
racks near the project sites, so we usually had to check storage
racks throughout the plant. We calculated that $500,000 worth
of labor was being spent each year looking for scaffolding.

A study found that, for 57% of all maintenance projects, there was
not enough scaffolding available at the scaffolding storage area nearest the
project site. This required carpenters to search other, nearby racks for the
necessary scaffolding. In 24% of the cases, they had to ask the truck depart-
ment to search the plant for the scaffolding needed. In short, considerable
time and effort were devoted to scrounging the necessary scaffolding.

Some think the solution is obvious—the plant doesn’t have enough
scaffolding. One estimate is that Sterling needs $100,000 worth of addi-
tional scaffolding.

Management is, however, wary about spending money on improve-
ments unless it is absolutely necessary, so management wants further anal-
ysis and thought.

What was the problem at Sterling Chemical? The common answer, both at
Sterling and when this problem is posed to first-year MBA students, is “Sterling
Chemical has too little scaffolding.” But that is wrong. The problem is “Why
isn’t scaffolding readily available?” A possible answer (i.e., cause of the prob-
lem) is that Sterling has too little scaffolding, but that is not the problem itself.

Problems: A
problem is a
question. A problem is something to be solved; it is a question, typically one that begins

with “Why . . . ”

1This case is drawn from “Science, Specific Knowledge, and Total Quality Management” by
Karen H. Wruck and Michael C. Jensen, which appeared in the Journal of Accounting and Economics,
Vol. 18 (1994), pp. 247–287.
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Figure 1.1: Fishbone Analysis. A problem (e.g., “why isn’t scaffolding readily
available?”) is put in a box (“the head”) and possible causes are
suggested (“the ribs”), with the ribs closest to the head denoting
the most likely causes.

Fishbone Analysis 1.2
Once we’ve identified the problem we wish to solve, we need to solve it. There
are many methods of solving problems and it is beyond these notes to cover
them all. Instead, the focus will be on two methods. One, which we will take
up later, is decision analysis, which is useful for solving decisions problems (this
was the type of analysis employed by Greg Wolfson). The second, which is
better suited to more open-ended problems, is fishbone analysis.

Figure 1.1 illustrates what fishbone analysis is all about. The problem—
e.g., “Why isn’t scaffolding readily available?”—is put in a box at the front
of the diagram. The possible causes for the problem are listed. Here, two
have been given: “Sterling needs more scaffolding” and “scaffolding is not
well managed.” Room has been left for other possible causes. If you have some
imagination, you can see why this is called fishbone analysis—the diagram
resembles a fish’s skeleton. Observe the problem to be solved is the “head” of
the fish and the possible causes are the “ribs.” Typically, possible causes that
are most likely to be the true cause are put closest to the head. Less plausible
causes are put further from the head.

Once your fish is drawn, the next step is to investigate each of the possi-
ble causes, starting with the ribs closest to the head. Following that course
of action, consider the first rib: “Sterling needs more scaffolding.” How do we
know if this is the cause? One answer is to inventory the scaffolding and check.
This is, in fact, what Sterling did after drawing its fish.

When Sterling inventoried its scaffolding, what it found “. . . was that we
had more than enough scaffolding on site, but that it was frequently in the
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wrong place at the wrong time.”2 In fact Sterling had 133 extra units of scaffold-
ing. Clearly, the proposed cause, “Sterling needs more scaffolding,” is wrong.

Moreover, the evidence from the scaffolding’s inventorying supports the
proposed cause “Scaffolding is not well managed.” So Sterling investigated
this. What it found was that various teams were hoarding scaffolding. As one
carpenter put it

We all knew that there were guys out there who hoarded scaffold-
ing. If you ever needed a cross brace, you knew that Charley would
have some. And if you needed a ladder section, you knew that Bob
was a ‘specialist’ in those. They hoarded what they used frequently
so that they wouldn’t have to go scavenging. But this caused short-
ages at the other storage racks.3

As a consequence, Sterling adopted changes to its scaffolding management
that all but eliminated shortages (necessary scaffolding was immediately avail-
able 97% of the time). Observe that by deploying fishbone analysis, Sterling
avoided jumping to the “obvious”—but false—solution of buying more scaf-
folding. At the very least, this analysis kept Sterling from wasting $100,000.
Furthermore, to the extent additional scaffolding wouldn’t have fixed the avail-
ability problem, it potentially saved Sterling even more.

Introduction to Decision
Analysis 1.3

In many cases, solving your problem involves choosing among alternatives.
Your objective is to choose the alternative that is best, where “best” depends
on what your goals are. Indeed, the first rule of decision making is to know
what your goals are. For example, if your decision problem is which movie to

The first rule of
decision making:
Know your goals
(objectives).

see at the multiplex, then “best” means “most entertaining” (assuming being
entertained is your goal).

Although the first rule of decision making may strike you as obvious, you
would be surprised how often people start making decisions without thinking
through what their goals are. For instance, obeying the first rule can often be
a problem when a committee makes a decision, because committee members
can have different goals. Sometimes the committee members recognize their
differences in advance, but sometimes they are unspoken. Occasionally com-
mittee members believe they are in agreement with respect to their goals when,
in fact, they are not (you’ve likely had conversations that began “it just didnt
occur to me that you wanted . . . ”). Psychology also plays a role here. You may
not, for example, want to admit to yourself what your true goals are—perhaps
because they are socially unacceptable—so you convince yourself that your
goals are something else. Unfortunately, it is beyond these notes to make sure

2Wruck and Jensen, cite supra, page 256.

3Wruck and Jensen, cite supra, page 256.
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that you obey the first rule. All they can do, as they have just done, is point out
that obeying the first rule is not as easy as it may at first seem.

Having identified your goals, you next have to identify your alternatives.
For some decision-making problems, your alternatives are obvious. For in-
stance, if you are deciding which movie at the multiplex to see, then your al-
ternatives are the movies playing plus, possibly, not seeing any movie at all.
For other problems, however, identifying your alternatives is more difficult.
For instance, if you are deciding which personal computer to buy, then it can
be quite difficult to identify all your alternatives (e.g., you may not know all the
companies that make computers or all the optional configurations available).
Fortunately, there are ways to overcome, at least partially, such difficulties, as
we will see later. We will even study the decision of whether you should expend
resources expanding your list of alternatives later in these notes.

Your choice of alternative will lead to some consequence. Depending on
the decision-making problem you face, the consequence of choosing a given
alternative will be either known or uncertain. If you are driving in your neigh-
borhood, then you know where you will end up if you turn left at a given
intersection. If you are investing in the stock market, then you are uncertain
about what returns you will earn. Typically, we will suppose that even if you
are uncertain about which particular consequence will occur, you know the set
of possible consequences. For instance, although you don’t know what your
stock price will be a year from now, you do know that it will be some non-
negative number. Moreover, you likely know something about which stock
prices are more or less likely. For example, you may believe that it is more
likely that your stock’s price will change by 20% or less than it will change by
21% or more.

Sometimes, however, you may not know what all the possible consequences
are. That is, some possible consequences could be unforeseen. To give an ex-
ample, the author once met a vineyard owner who was proud of his “green”
farming techniques. Unlike many of his fellow vintners, he used pesticides
that killed only the “bad” bugs, leaving the “good” bugs—those that ate the
bad bugs—alive. A consequence of this, which was unforeseen by the vintner,
was that if he successfully killed the bad bugs, then the good bugs would be
left with nothing to eat and would starve.

By their very nature, unforeseen consequences are difficult to identify prior
to making your decisions. And for the same reason, it is difficult to predict
which consequences will be unforeseen by others. As a practical manner, one
way to help identify unforeseen consequences in your own decision making is
to think about what your “un-goals” are; that is, the consequences you would

Un-goals: A good
manager tries to
identify unintended
consequences.

like not to happen. For instance, an un-goal of the vintner was to kill the good
bugs. Another way to identify unforeseen consequences is to reframe your way
of thinking about your goals. For instance, instead of thinking about not killing
the good bugs, think instead of helping the good bugs to survive. Reframed
in this way, the adverse consequence of killing the good bugs’ food supply
might be more apparent. As discussed in any good organizational behavior
class, how we think about a problem is very much tied to how the problem is



6 Chapter 1: Problem Solving & Decision Theory

Marke
tin
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ca
mpaign

No campaign

Produce
$5 million

Don’t produce −$1 million

Produce
$3 million

Don’t produce $0

Figure 1.2: A decision tree for a firm that must first decide whether to launch
a marketing campaign for a new product. The firm’s subsequent
decision is whether to actually produce the product. Square nodes
are decision nodes. From them stem branches. At the end of the
tree are payoffs.

framed. It is beyond the scope of these notes to discuss framing effects fully,
but it is worth pointing out they exist.

Decision Making Under
Certainty 1.4

To represent, in a schematic way, a decision problem, we draw a decision tree .
An example of such a tree is shown in Figure 1.2. It represents the following

Decision tree: A
graphical
representation of a
decision problem as
a series of
branching
alternatives.

problem: A firm is considering producing a new product. Prior to produc-
ing, the firm can conduct a marketing campaign (e.g., advertise heavily) or not.
Suppose that a marketing campaign costs $1 million. Suppose that if the prod-
uct is marketed and produced, it will generate revenues of $8 million while
costing $2 million to produce; so profit will be $5 million (= $(8 − 2 − 1) mil-
lion). If the product is marketed, but not produced, it will generate no revenue
and no production cost; so profit will be $1 million (i.e., just the cost of the
marketing campaign). If the product is not marketed, but produced, it will
generate a revenue of $4 million but cost $1 million to produce; so profit will
be $3 million. Finally, if the product is neither marketed, nor produced, then
profit will be $0.

Each square in Figure 1.2 is a decision node . A decision node indicates
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that the decision maker (in this case the firm) has a decision to make. The
alternatives available to him or her at that decision node are represented by
the branches that stem from the right-side of the decision node. For instance,
the alternatives available to the firm at the left-most—first—decision node are
“marketing campaign” and “no campaign.” Note that the tree is read from left
to right; moreover, going from left to right is meant to represent the sequence of
decisions. For example, the firm must first decide whether to have a marketing
campaign before it decides whether to produce the product. At the end of
the tree are the consequences or payoffs from the sequence of decisions. For
instance, if the firm chose “no campaign” and, then, “produce,” it would make
a profit of $3 million. Payoffs are expressed in terms relevant to the decision
maker’s goals. Here, the goal is to make money, so they are represented in
monetary terms.

Having represented a decision problem by a tree, the next step is to solve
it. Solving a tree means determining which decisions will best accomplish the
decision makers goals. If, as in Figure 1.2, the goal is to make money, then this
means determining the decisions that will lead to the most money. Trees are
solved by working backwards, a procedure known as backwards induction:
Start at the rightmost decision nodes and select the branches that give the deci-

Backwards
induction: Trees
are solved by
working backwards

sion maker the largest payoffs. For the tree in Figure 1.2, this means choosing
“produce” at the top rightmost decision node—since a $5 million gain is better
than a $1 million loss—and choosing “produce” at the bottom rightmost de-
cision node—since a $3 million gain is better than $0. Next move left to the
preceding decision nodes. Again, select the branches that give the decision
maker the largest payoffs taking into account, if necessary, the future decisions that
will be made. In Figure 1.2, this means choosing “marketing campaign” at the
first node because doing so ultimately leads to a payoff of $5 million, whereas
“no marketing campaign” ultimately leads to a payoff of $3 million. Were there
any decision nodes to the left of the first node (i.e., were there decisions to be
taken prior to the decision of whether to market), then you would choose the
alternatives at those nodes taking into account your decision to have a market-
ing campaign at the “marketing campaign/no marketing campaign” node.

The tree in Figure 1.2 is straightforward, so solving it is straightforward
as well. For more complicated trees, however, it is important to keep track of
where you are as you work backwards. Two devices for keeping track are ar-
rowing the correct decision and valuing the intermediate decision nodes (i.e.,
the decision nodes other than the first). Arrowing means putting a little arrow
(or other mark) on the correct decision. When youre done arrowing, the ar-
rows will guide you through the tree. For instance, in Figure 1.2, you would
put an arrow on the “marketing campaign” branch, because that is the correct
alternative to choose. Valuing a decision node means writing the payoff from
making the correct decision at that decision node. Figure 1.3 shows Figure 1.2
with arrows and values.
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◮Marke
tin
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ca
mpaign

No campaign

◮Produce
$5 million

Don’t produce −$1 million

◮Produce
$3 million

Don’t produce $0

$5 million

$3 million

Figure 1.3: The correct branches to follow are noted with arrows (◮). The
values of the intermediate nodes are also noted.

Decision Making Under
Uncertainty 1.5

[Before reading this section, you may wish to review the material in Appen-
dices B1 and B3.]

Many decisions are made in situations of uncertainty. To represent such deci-
sion problems, we use a second kind of node: a chance node . A chance node,
drawn as a circle, indicates that what follows is uncertain. Each branch stem-
ming from the chance node shows a possible outcome of the random process
that the chance node represents. For instance, Figure 1.4 represents the deci-
sion tree associated with launching a new product.

In Figure 1.4, the firm can either launch or not launch a new product. This
is a decision of the firm, so represented by a decision node (square). If it doesnt
launch, then its payoff is $0. If it does launch, its payoff is uncertain. Hence,
the “launch” branch leads to a chance node (circle). There are three possible
outcomes if the firm launches. The new product can be very successful—a
blockbuster; or it do acceptably well; or it can fail. The profits associated with
each outcome are indicated at the ends of the respective branches (e.g., accept-
able performance yields $3 million in profit). The probabilities of each of the
possible outcomes are shown in square brackets. Thus, for instance, the prob-
ability of failure is .05. Note, summing across the branches that emanate from
a chance node, the probabilities must sum to 1 (e.g., .55 + .40 + .05 = 1).

Recall that the expected value of a gamble when there are N possible out-
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Launch

Don’t launch
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[.40]
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[.05] −$4 million

$0

EV = $4.85 million

Figure 1.4: A firm faces the decision of launching a new product or not launch-
ing it. There are three possible outcomes if it launches: block-
buster, acceptable, and failure. The payoff from each is shown at
the end of the tree and the probability of each is indicated in brack-
ets.
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comes, denoted EV , is given by the formula

EV = p1x1 + · · · pNxN ,

where pn is the probability of the nth outcome and xn is the payoff should
the nth outcome occur (see expression (B3.1) on page 171). For example, the
expected value of the gamble shown in Figure 1.4 is, in millions,

$4.85 = .55 × $7 + .4 × $3 + .05 × (−$4) .

It might strike you as odd that $4.85 million is called the “expected” value of
that gamble: How could $4.85 million be “expected” if the only possible values
are $7 million, $3 million, and $4 million? There are two justifications for the
term “expected.” First, suppose that we repeated the gamble many times, say
10,000 times. Your average winnings—that is, the total of your winnings for
the 10,000 repetitions divided by 10,000—would very high probability be close
to $4.85 million.4 In other words, we would expect your average winnings to
be $4.85 million.

As a second justification, suppose that you ran a life insurance company.
Then, for each insured, you are essentially gambling on when he or she will
die (i.e., x would be age at death). The expected value would, thus, refer to the
expected age of death of an insured. If you insure a large enough population,
then the average age at death among your insureds will be close to the expected
age of death of a single insured.

Expected value is useful for decision theory because many decision makers
are expected-value maximizers, which is to say that they choose among their

Expected-value
maximizer: A
decision maker who
chooses, from
among her
alternatives, the one
the yields the
greatest expected
value.

alternatives the one that yields the greatest expected value.
To better understand an expected-value maximizers behavior, consider the

decision problem shown in Figure 1.4. As noted above, the expected value of
launching is $4.85 million. Because $4.85 million is greater than $0 (the firms
payoff if it doesnt launch), the firm would choose to launch if it is an expected-
value maximizer.

Note that we solve the tree in Figure 1.4 in the same way we solve all trees—
by working backwards: We start at the rightmost node, in this case a chance
node, calculate the value of that node (i.e., its expected value), move left to
the preceding node (i.e., the launch/no launch decision node), and choose the
alternative that yields the greater expected value (here, launch).

To extend this example, suppose that, prior to making the launch/no launch
decision, the firm could commission a survey that would tell it how successful
the product will be. Of course, whether to conduct the survey is itself a deci-
sion, so it must be added to the tree. Figure 1.5 revises the tree in Figure 1.4 to
reflect these changes.

4For instance, there is approximately an 80% probability that your average winnings would
fall between $4.75 and $4.95 million and a 95% probability that your average winnings would fall
between $4.7 and $5 million. If you have had an advanced course in probability, you may recognize
that this is nothing more than the law of large numbers.
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Figure 1.5: Now, the firm can conduct a survey, if it wishes, prior to making its
launch decision.
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As always, we solve the tree by working backwards. The top of tree is the
same as Figure 1.4, so we know from our previous analysis that the firm would
choose to launch. Its expected payoff is $4.85 million. At the bottom of the tree,
the rightmost nodes are all decision nodes. Note that they follow the chance
node because, if the firm does a survey, it will know how successful its new
product will be at the time it decides whether to launch. At the top two of
these decision nodes, the firm would launch—positive amounts of money beat
nothing. At bottom-most node it would not launch—$0 beats suffering a loss.
Note that the values of these three decision nodes have been appropriately
labeled. When the firm decides to take a survey, it doesnt know what it will
learn, so what it will learn is uncertain. This is reflected by the chance node
that precedes the decision nodes. The expected value at that node is

$5.05 million = .55 × $7 million + .4 × $3 million + .05× $0 .

Comparing $5.05 million to $4.85 million, it follows that the firm would prefer
to undertake the survey than make a decision without it.

This last example also illustrates how we can calculate the value of this sur-
vey: The value of the survey is the difference in the expected payoff with the
survey, $5.05 million, and the expected payoff without the survey, $4.85 mil-
lion; that is, the survey is worth $200,000. The firm would pay up to $200,000
to have this survey conducted.

To summarize:

Solving decision trees for expected-value maximizers:

1. For each of the rightmost nodes proceed as follows:

(a) If the node is a decision node, determine the best alternative to take.
The payoff from this alternative is the value of this decision node. Ar-
row the best alternative.

(b) If the node is a chance node, calculate the expected value. This ex-
pected value is the value of this chance node.

2. For the nodes one to the left proceed as follows:

(a) If the node is a decision node, determine the best alternative to take,
using, as needed, the values of future nodes (nodes to the right) as
payoffs. The payoff from this alternative is the value of this decision
node. Arrow the best alternative.

(b) If the node is a chance node, calculated the expected value, using,
as needed, the values of future nodes (nodes to the right) as payoffs.
The expected value is the value of this chance node.

3. Repeat Step 2 as needed, until the leftmost node is reached. Following
the arrows from left to right gives the sequence of appropriate decisions
to take.
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Information 1.6
Often when we make a decision under uncertainty we would like more in-
formation about the uncertainty we face. You, for example, might read the
prospectus for a security that you are considering purchasing, or you may ask
a friend or a stock broker for advice about that security. We have, in fact, al-
ready seen a situation of information gathering. Recall Figure 1.5. In that tree,
a firm was deciding whether to launch a new product or not. Prior to making
this decision, the firm could, if it wished conduct a survey that would perfectly
reveal how successful the product would be. Without conducting a survey, the
firm would have to make its launch decision “in the dark.” This is an example
of a decision maker (e.g., the firm) deciding whether to acquire additional in-
formation before making a decision. Note that whether to acquire additional
information is, itself, a decision; one that we will study in this section.

Information is divided into two classes: perfect and imperfect. Perfect in-
formation, like that in Figure 1.5, is information that completely reveals in ad-
vance the outcome of some future uncertain event. In that figure, for instance,

Perfect
information:
Information that
completely reveals
what will happen;
that is, information
that once learned
means there is no
longer uncertainty
about a given event.

the survey completely revealed how successful the launch would be.
In other circumstances, we might expect to receive imperfect information.

Imperfect information helps us to have a better idea of what will happen in the
future, but it does not completely reveal what will happen.

Imperfect
information:
Information that
improves a decision
maker’s ability to
predict the outcome
of a future event,
but which does not
completely reveal
what will happen.

As an example of imperfect information, consider Figure 1.6, which illus-
trates the following situation: A firm uses sheet metal in making its product
(e.g., car parts). It is concerned with whether a recent shipment of sheet metal
is up to its standards. It can use the sheet metal and do an entire production
run, return the sheet metal to the supplier, or do a test run and then decide
whether to do a production run or return the sheet metal. Unfortunately, a
test run is not definitive as to whether the metal is up to the firms standards,
although it gives indications. Let those indications be summarized as “likely
okay” and “likely not okay.” If the test run comes back “likely okay,” then the
probability that the metal is high quality is p and, hence the probability that
the metal is low quality is 1 − p. For reasons discussed below, we can assume
p > 1/2. If the test run comes back “likely not okay,” then the probability that
the metal is high quality is 1 − p and the probability that it is low quality is
p. Absent a test run, the probability that the metal is high quality is 1/2 and,
hence, the probability that it is low quality is 1/2.

For our model of information to be consistent, it must be that that the ex-
pected probability of high quality prior to doing a test run is 1/2 (taking an
action can’t change the underlying probabilities). Given our assumption about
what the indicators mean, this consistency can be achieved only if the proba-
bility of getting the “likely okay” indicator is 1/2 and, thus, the probability of
the “likely not okay” indicator is 1/2 (remember the probabilities at any chance
node must sum to one).5

5If you want to see this demonstrated formally, let α be the probability of the “likely okay”
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Figure 1.6: An example of imperfect information. By doing a test run, the firm
gains information about how likely it is that the sheet metal is high
quality.
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Why can we assume p > 1/2? If the test run is informative, which we
assume it is, then a result of “likely okay” must cause the firm’s updated prob-
ability that the metal is high quality to be greater than if it had received no
information. Since the probability of high quality absent information is 1/2,
the probability having seen the metal is “likely okay” must be greater than
1/2; that is, p > 1/2. Similarly, if the test run comes back “likely not okay,”
then the firms updated probability that the metal is high quality is lower than
if it had received no information; that is, 1 − p < 1/2.

The variable p is, therefore, a measure of how informative the test run is.
The closer p is to 1/2, the less informative the test run is. Indeed, were p = 1/2,
then there would be no information in a test run, because the outcome of a test
run would not change the probability that metal is high quality. Conversely, the
farther p is from 1/2 (equivalently, the closer it is to 1), the more informative
the test run is. Indeed, were p = 1, then we would have perfect information.

We solve the tree in Figure 1.6 like any other tree—starting at the right and
moving left. The top rightmost chance node yields an expected value of

EVtop = p × $4 million + (1 − p)× (−$2) million.

Because p > 1/2, it is readily seen that EVtop > $1 million. Consequently, at
the top right decision node, the decision would be to produce. The value of
that decision node is EVtop.

Going down to the bottom rightmost chance node, we see it has an expected
value of

1

2
× $4 million +

1

2
× (−$2) million = $1 million.

Given that a gain of $1 million beats a loss of $1 million, the correct decision
at the preceding decision node is to produce; hence, the value of this decision
node is $1 million.

Now consider the middle rightmost chance node. It has an expected value
of

EVmiddle = (1 − p)× $4 million + p × (−$2) million

= $4 million − p × $6 million.

indicator and, thus, 1 − α is the probability of “likely not okay.” The ultimate probability that the
metal is high quality prior to any testing is αp + (1 − α)(1− p) (this is the law of total probability,
Proposition 48 on page 166). So

αp + (1 − α)(1− p) =
1

2
;

or, manipulating the expression algebraically,

2

(

p − 1

2

)

α − p + 1 =
1

2
.

Adding p − 1 to both sides yields

2

(

p − 1

2

)

α = p − 1

2
,

which entails that α = 1/2 as required.
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The decision to take at the preceding decision node depends on the value of p:
If EVmiddle ≥ −$1 million, then the firm should produce. If EVmiddle < −$1
million, then the firm should not produce. When is EVmiddle ≥ −$1 million?
Answer: when

$4 million − p × $6 million ≥ −$1 million;

or, dividing both sides by −$1 million (because this is a negative quantity, it
reverses the inequality sign), when

6 × p − 4 ≤ 1 .

This further simplifies to p ≤ 5/6. So when p ≤ 5/6—6it is not super likely the
metal is low quality even conditional on an indication of “likely not okay”—
then the firm should produce even though the result of the test run is not
promising. On the other hand, if p > 5/6—6it is very likely the metal is low
quality conditional on the test run returning “likely not okay”—then the firm
should not produce if the test run is not promising.

Working back to the first chance node, we find that the expected value of
that node is

1

2
× EVtop +

1

2
×
{

EVmiddle , if p ≤ 5
6

−$1 million , if p >
5
6

.

Finally, we can decide what to do at the first decision node; that is, we can
determine whether it is worthwhile to do a test run or not. Suppose first, that
a test run is not especially informative, which, here, means p ≤ 5/6. The value
of choosing the “test run” branch is, then,

1

2
× EVtop +

1

2
× EVmiddle =

1

2
×
(

p × $4 million + (1 − p)× (−$2) million
)

+
1

2
×
(
(1 − p)× $4 million + p × (−$2) million

)

=
1

2
× $4 million +

1

2
× (−$2) million

= $1 million.

Observe this is exactly the same as the expected payoff from choosing the “no
test run” branch. In this case, then, doing the test run creates no additional value.

Suppose, in contrast, that a test run is very informative, which, here, means
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p > 5/6. The value of doing the test run is, then,

1

2
× EVtop +

1

2
× (−$1) million =

1

2
×
(

p × $4 million + (1 − p)× (−$2) million
)

+
1

2
(−$1) million

= p × $3 million − $1.5 million

> $1 million (because p >
5

6
) .

In this case, doing the test run does create value.
Why were the two cases so different? That is, why was there value to do-

ing a test run when p > 5/6 but not otherwise? The answer has to do with
the difference in how the firm responds to “likely not okay” in the two cases.
When p ≤ 5/6, the firm produces even if the result from the test run is “likely
not okay.” This is also the action it takes absent any information (i.e., at the
bottom decision node) and if the result is “likely okay.” That is, when p ≤ 5/6,
the information learned from the test run has no potential to affect the firms
action—when p ≤ 5/6, the firm always produces. In contrast, when p > 5/6,
then the firm does not produce if the result from the test run is “likely not
okay.” That is, when p > 5/6, the information learned from the test run does
have the potential to affect the firms action—the firm takes different actions de-
pending on the result of the test run. This reflects a general result about the
value of information:

Conclusion (The fundamental rule of information). Information has value only
if it has the potential to affect a decision maker’s choice of action.

When p ≤ 5/6, the information has no potential to affect the firm’s decision,
but when p > 5/6, the information has the potential to affect the firm’s de-
cision. This is why the information is valueless when p ≤ 5/6, but valuable
when p > 5/6.

How valuable is the information when it is valuable? To find out, we sub-
tract the expected value of not doing the test run from the expected value of
doing the test run:

p × $3 million − $1.5 million
︸ ︷︷ ︸

EV if do test run

− $1 million
︸ ︷︷ ︸

EV don’t do test run

= p × $3 million − $2.5 million

(for p > 5/6). Figure 1.7 plots the value of information for p between 1/2 and 1.
Note that the value is zero for p between 1/2 and 5/6 and is increasing (upward
sloping) for p between 5/6 and 1. The information is most valuable when
p = 1, which makes sense: We would expected perfect information (which is
what p = 1 represents) to be more valuable than imperfect information. This,
too, is a general result:
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Figure 1.7: A plot of the value of information. Information is valueless for p ≤
5/6. It is valuable for p > 5/6. Perfect information (i.e., p = 1)
maximizes the value of the information.

Conclusion. Perfect information is always at least as valuable as imperfect informa-
tion.

Figure 1.8 repeats Figure 1.6, except now the payoff if the metal is returned
to the supplier is left as a variable, z, and the value of p is fixed at 5/6. What we
want to do now is understand how our conclusions change with z. In partic-
ular, we want to see how the value of information changes as z changes. Note
that the expected values have been written in for each of the rightmost chance
nodes. From this information, we see that we want to divide our analysis into
four regions:

1. z ≤ −$1 million;

2. −$1 million < z ≤ $1 million;

3. $1 million < z ≤ $3 million; and

4. $3 million < z.

In region 1, the decision to make at each of the three rightmost decision
nodes is “produce.” Moreover, this is the decision regardless of the information
learned. Since the information, therefore, has no potential to change the firm’s
action, the information must be worthless (this is just the Fundamental Rule of
Information).
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Figure 1.8: More on the value of information
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In region 2, the firm produces at the top and bottom decision node, but
returns the metal to the supplier at the middle node. The information has,
therefore, the potential to change the firm’s action, so we know it has value.
Specifically,

Value of information in region 2 =
1

2
× $3 mil. +

1

2
× z − $1 mil.

=
1

2
× z + $500, 000 .

Note that, in region 2, the value of information is increasing in z.
In region 3, the firm produces only at the top decision node, but returns the

metal to the supplier at the bottom two nodes. Again, the information has the
potential to change the firms action, so we know it has value. Specifically,

Value of information in region 3 =
1

2
× $3 mil. +

1

2
× z − z

= $1, 500, 000− 1

2
z .

Note that, in region 3, the value of information is decreasing in z.
Finally, in region 4, the firm always does best to return the metal to the

supplier. Moreover, this is the decision regardless of the information learned.
Since the information has, therefore, no potential to change the firm’s action,
the information must be worthless.

Figure 1.9 plots the value of the information as a function of z. From the
figure, it is clear that the information is most valuable when z = $1 million.
What’s significant about $1 million? It’s the value of z that makes the firm
indifferent between producing and returning the metal when it has no infor-
mation. This is not a fluke, but an illustration of a general result:

Conclusion. The value of information is maximized when the decision maker would,
absent the information, view alternative actions as equally attractive.

Real Options 1.7
In our discussion of information, we have so far treated information as some-
thing actively sought by the decision maker (e.g., by doing a survey or a test
run). Another way a decision maker can often acquire information is by wait-
ing; that is, the passage of time resolves some of the uncertainty. The ability
to use information learned over time can create certain options for the deci-
sion maker. To distinguish these options from financial options, they are often
referred to as real options.

The main idea is that before you commit to an irreversible action, you have
the option to commit or not to commit (just as with an in-the-money call option,
where you have option to exercise or wait).
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z

Value of information
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Region 1 Region 2 Region 3 Region 4

Figure 1.9: A plot of the value of information against the value of returning the
metal to the supplier, z. (Note horizontal and vertical scales are
different.)

Figure 1.10 illustrates a real option (note its resemblance to Figure 1.5). A
firm can delay its launch of a new product or not delay. The success of the
product depends on the growth rate of the economy. If the economy enjoys
a high rate of growth, then the firm stands to earn $20 million. If the rate of
growth is moderate, then the firm makes $5 million. Finally if there is low or
no growth, then firm will lose $5 million. Observe from the figure that delay
allows the firm to learn the state of the economy before making its launch de-
cision. Delay is not without cost, however. If it delays, then the payoffs should
it launch are all reduced by D, where D ≥ 0.

From Figure 1.10, we see that the firm should delay if

$6 million − 3

5
D ≥ $4 million ;

or, solving this last expression for D, if

$3
1

3
million ≥ D .

Observe there is a difference between information gained by waiting and
information bought prior to a decision (e.g., a survey). Suppose that rather
than the delay/no delay decision, the initial decision was forecast/no forecast,
where forecast is an econometric forecast of the economy’s future state. Let F
be the cost of the forecast. Because F is spent regardless of whether the firm ul-
timately launches or not, the expected value of doing the survey is $6 millionF.
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Figure 1.10: A firm has the option of delay.
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So it pays to do the forecast only if it costs no more than $2 million. In other
words, because the cost of delay is not always borne (e.g., it is not borne if
the firm decides not to launch), whereas the cost of ex ante information (e.g., a
forecast) is always borne, the cost of delay that a decision maker will accept is
greater than the cost he or she will accept to obtain the information in advance
(e.g., through a survey or forecast).

Attitudes Towards Risk 1.8
Consider the following situation. You own a “lottery” ticket with the following
properties. Tomorrow, a fair coin will be flipped. If it lands heads up, you will
receive $1 million. If it lands tails up, you will receive nothing. The ticket is
transferable; that is, you can give or sell it to another person, in which case
this other person is entitled to the winnings from the lottery ticket (if any).
Between today and tomorrow, people may approach you about buying your
ticket. What is the smallest price that you would accept in exchange for your
ticket?

A possible answer is $500,000 because that is the expected value of this
lottery. Many people, however, would be willing to accept less than $500,000.
You, for instance, might be willing to sell the ticket for as little as $400,000,
under the view that a certain $400,000 was worth the same as a half chance at
$1 million. Moreover, even if you are unwilling to sell your ticket for $400,000,
many people in your situation would be.

Selling your ticket for less than $500,000 is, however, inconsistent with be-
ing an expected-value maximizer, because you wouldnt be choosing the al-
ternative that yielded you the greatest expected value. So, if you would, in
fact, accept $400,000, then you are not an expected-value maximizer. Moreover,
even if you are (i.e., you wouldnt sell for less than $500,000), others definitely
aren’t. As this discussion makes clear, we need some way to model decision
makers who arent expected-value maximizers. That is the task of this section.

One reason that someone is not an expected-value maximizer is that he
is concerned with the riskiness of the gambles he faces. For instance, a criti-
cal difference between an expected payoff of $500,000 and a certain payoff of
$400,000 is that there is considerable risk with the former—you might win $1
million, but you also might end up with nothing—but there is no risk with the
latter. Most people don’t like risk, and they are willing, in fact, to pay to avoid
it. Such people are called risk averse . By accepting less than $500,000 for the
ticket, you are effectively paying to avoid risk; that is, you are behaving in a Risk aversion: A

distaste for risk.risk-averse fashion. When you buy insurance, thereby reducing or eliminat-
ing your risk of loss, you are behaving in a risk-averse fashion. When you put
some of your wealth in low-risk assets, such as government-insured deposit
accounts, rather than investing it all in high-risk stocks with greater expected
returns, you are behaving in a risk-averse fashion.

To define risk aversion more formally, we begin with the concept of a certainty-



24 Chapter 1: Problem Solving & Decision Theory

equivalent value :

Definition. The certainty-equivalent value of a gamble is the minimum payment
a decision maker would accept, if paid with certainty, rather than face a gamble. The
certainty-equivalent value is often abbreviated CE.

For example, if $400,000 is the smallest amount that you would accept in ex-
change for the lottery ticket discussed previously, then your certainty-equivalent
value for the gamble is $400,000 (i.e., i.e., CE = $400, 000).

We can now define risk aversion formally:

Definition. A decision maker is risk averse if his or her certainty value for any given
gamble is less than the expected value of that gamble. That is, we say an individual is
risk averse if CE ≤ EV for all gambles and CE < EVfor at least some gambles.

In contrast, an expected-value maximizer is risk neutral—his or her deci-
sions are unaffected by risk. Formally,

Risk neutral:
Unaffected by risk.

Definition. A decision maker is risk neutral if the certainty-equivalent value for any
gamble is equal to the expected value of that gamble; that is, he or she is risk neutral if
CE = EV for all gambles.

In rare instances, a decision maker likes risk; that is, he or she would be
willing to pay to take on more risk (or, equivalently, require compensation to
part with risk). For instance, if someone’s certainty-equivalent value for the
aforementioned lottery ticket were $600,000 (i.e., she had to be compensated
for giving up the risk represent by the ticket), then she would be called risk
loving. It is worth emphasizing that risk-loving behavior is fairly rare.6

At this point you might ask: When is it appropriate (i.e., reasonably accu-
rate) to assume a decision maker is risk neutral and when is it appropriate to
assume he is risk averse? Some answers:

SMALL STAKES VERSUS LARGE STAKES: If the amounts of money involved in
the gamble are small relative to the decision maker’s wealth or income, then his
behavior will tend to be approximately risk neutral. For example, for gambles
involving sums less than $10, most people’s behavior is approximately risk
neutral. On the other hand, if the amounts of money involved are large relative
to the decision maker’s wealth or income, then his behavior will tend to be risk
averse. For example, for gambles involving sums of more than $10,000, most
people’s behavior exhibits risk aversion.

SMALL RISKS VERSUS LARGE RISKS: If the possible payoffs (or at least the most
likely to be realized payoffs) are close to the expected value, then the risk

6Although it is true that a number of people like to pay to gamble on occasion (e.g., they visit
casinos or play state lotteries), their more typical behavior can be described as risk neutral or risk
averse (e.g., even people who visit casinos typically purchase homeowner’s insurance). Moreover,
it is not clear that people gamble because they love the risk per se; they may simply like the ex-
citement of the casino or like to dream about what they would do if they won the next Powerball
drawing.
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is small and the decision maker’s behavior will be approximately risk neu-
tral. For instance, if the gamble is heads you win $500,001, but tails you win
$499,999, then your behavior will be close to risk neutral since both payoffs are
close to the expected value (i.e., $500,000). On the other hand, if the possible
payoffs are far from the expected value, then the risk is greater and the deci-
sion maker’s behavior will tend to be risk averse. For instance, we saw that
we should expect risk-averse behavior when the gamble was heads you win $1
million, but tails you win $0.

DIVERSIFICATION: So far the question of whether someone takes a gamble has
been presented as an all-or-nothing proposition. In many instances, however,
a person purchases a portion of a gamble. For example, investing in General
Motors (or any other company) is a gamble, but you don’t have to buy all of
General Motors to participate in that gamble. Moreover, at the same time you
buy stock in General Motors, you can purchase other securities, giving you a
portfolio of investments. If you choose your portfolio wisely, you can diversify
away much of the risk that is unique to a given company. That is, the risk that is
unique to a given company in your portfolio no longer concerns you—you are
risk neutral with respect to it. Consequently, you would like your firm to act as
an expected-value maximizer. As we discuss in next, diversified decision mak-
ers are risk neutral (or approximately so), while undiversified decision makers
are more likely to be risk averse.

Diversification

To clarify the issue of diversification, consider the following example. There
are two companies in which you can invest. One sells ice cream. The other
sells umbrellas. Ice cream sales are greater on sunny days than on rainy days,
while umbrella sales are greater on rainy days than on sunny days. Suppose
that, on average, one out of four days is rainy; that is, the probability of rain is
1/4. On a rainy day, the umbrella company makes a profit of $100 and the ice
cream company makes a profit of $0. On a sunny day, the umbrella company
makes a profit of $0 and the ice cream factory makes a profit of $200. Suppose
you invest in the umbrella company only; specifically, suppose you own all of
it. Then you face a gamble: on rainy days you receive $100 and on sunny days
you receive nothing. Your expected value is

$25 =
1

4
× $100+

3

4
× $0 .

Suppose, in contrast, that you sell three quarters of your holdings in the
umbrella company and use some of the proceeds to buy one eighth of the ice
cream factory. Now on rainy days you receive $25 from the umbrella com-
pany (since you can claim one quarter of the $100 profit), but nothing from
the ice cream company (since there are no profits). On sunny days you receive
$25 from the ice cream company (since you can claim one eighth of the $200
profit), but nothing from the umbrella company (since there are no profits).
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That is, rain or shine, you receive $25—your risk has disappeared! Your ex-
pected value, however, has remained the same (i.e., $25). This is the magic of
diversification.

Moreover, once you can diversify, you want your companies to make ex-
pected-value- maximizing decisions. Suppose, for instance, that the umbrella
company could change its strategy so that it made a profit of $150 on rainy
days, but lost $10 on sunny days. This would increase its daily expected profit�
by $5—the new EV calculation is

1

4
× $150+

3

4
(−$10) = $30 .

It would also, arguably, increase the riskiness of its profits by changing its strat-
egy in this way. Suppose, for convenience, that 100% of a company trades on
the stock exchange for 100 times its expected daily earnings.7

The entire ice cream company would, then, be worth $15,000 (= 100 ×
(1/4 × $0 + 3/4 × $200)) and the entire umbrella company would, then, be
worth $3000. To return to your position of complete diversification and earning
$25 a day, you would have to reduce your position in the umbrella company to
hold one sixth of the company and you would have to increase your holdings
of the ice cream company to 2/15th of the company:

Earnings on a rainy day :
1

6
× $150+

2

15
× $0 = $25 ;

and

Earnings on a sunny day :
1

6
× (−$10) +

2

15
× $200 = $25 .

Going from holding one fourth of the umbrella company to owning one sixth of
the umbrella company means selling 1/12th of the umbrella company,8 which
would yield you $250 (= 1/12 × $3000). Going from holding one eighth of the
ice cream company to owning 2/15ths means buying an additional 1/120th of
the ice cream company,9 which would cost you $125 (= 1/120× $15, 000). Your

7The price-to-earnings ratio is 100 here, but the value of the price-to-earnings ratio does not
matter for the conclusions reached here. If the ratio were r, then decreasing your holdings of
the umbrella company to 1/6th of the company and increasing your holdings of the ice cream
company to 2/15th would yield a trading profit of

30r

12
− 150r

120
=

5

4
r > 0 .

Now you might wonder whether it is appropriate to use the same price-to-earnings ratio for both
firms. In this case it is, at least if you believe that the stock price is driven by fundamentals (that is,
future profits).

8Because 1
4 − 1

6 = 3
12 − 2

12 = 1
12 .

9Because 2
15 − 1

8 = 16
120 − 15

120 = 1
120 .
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profit from these stock market trades would be $125. Moreover, you would
still receive a riskless $25 per day. So because you can diversify, you benefit
by having your umbrella company do something that increases its expected
value, even if it is riskier.

Decision Making by Risk-Averse Decision Makers

Analyzing the behavior of risk-averse decision makers fully is beyond the scope
of these notes. This is, however, a topic of importance, especially in finance, in-
surance, and the setting of incentive compensation. Finance courses, among
others, provide tools for understanding the behavior of risk-averse decision
makers.

Summary 1.9
This chapter began with a discussion of a general problem-solving method,
fishbone analysis.

We then turned to decision making under certainty. Such decision problems
could be represented by decision trees consisting of decision nodes (squares),
branches for the alternatives, and payoffs. These trees, like all trees, were solved
by working from right to left (although the tree is read left to right).

Next we added the possibility of uncertainty. We indicated uncertainty
in our trees by using chance nodes (circles). The branches stemming from a
chance node are the possible outcomes of the random event that the chance
node represents. We practiced solving trees with uncertainty under the as-
sumption that the decision makers were expected-value maximizers.

We next analyzed the value of information in decision-making problems.
Three points were made: (1) Whether or not to seek more information is, itself,
a decision that needs to be considered as part of the overall decision making
process; (2) information is valuable only if it has the potential to change deci-
sions; (3) information is maximally valuable when, absent the information, the
decision maker is indifferent among his options.

We observed that delay is often a way to obtain information. In many ways
it is similar to obtaining information ex ante (consider, e.g., the similarities be-
tween Figures 1.5 and 1.10). However, because the cost of delay is not always
borne, decision makers will generally be willing to pay a higher cost in terms
of delay than they will to obtain the information ex ante.

Finally, we considered the issues of attitudes toward risk. While many deci-
sion makers are risk averse, we also saw that there were conditions under which
risk neutrality could be assumed. One condition was when the decision maker
was diversified. We saw that, once diversified, an individual wants the firms in
which he or she invests to behave as expected-value maximizers.
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Costs 2
What is the cost of an activity (e.g., providing a good or service)? The obvious
answer might seem “the money spent on that activity.” The purpose of this
chapter is to convince you that, like so many “obvious” answers, this is not
(necessarily) the correct answer.

Opportunity Cost 2.1
The correct way to think about cost from the perspective of making good busi-
ness decisions is to consider the cost of some activity (alternatively, good, de-
cision, service, etc.) to be the value of the most highly valued forgone activity
(i.e., the value of the best alternative decision). Economists describe this way of
viewing cost as considering the opportunity cost of an activity or decision. In

Opportunity cost:
The value of the
most highly valued
forgone activity or
use of a good.

other words, the cost of something is the value of the best opportunity given
up.

In many circumstances, the opportunity cost notion coincides with what
might be termed the naı̈ve view of cost, namely it’s your expenditure on the
activity in question. If, for instance, you purchase three tons of grapes for your
wine-making business, then the cost of the grapes is the amount you pay for
those grapes.

This naı̈ve view, focusing on expenditures, can, however, lead one to make
bad decisions. For instance, suppose you purchased 1000 liters of a chemical
that is used in your production process. Suppose you paid a price of $10 per
liter. Suppose, however, that after purchase, but before use, the price of this
chemical jumps to $11 on the open market. The cost if you use this chemical is
not your expenditure, $10,000, but rather $11,000, the current value of the 1000
liters. Why? Because your next best use of the chemical is to sell it on the open
market and the value of this next-best activity is $11,000. You can see this by
supposing that the products you would make from the 1000 liters would sell
for a total of $10,500. If you produce, youll have $10,500 in the bank and you
might, incorrectly, suppose yourself to have made a $500 profit. In fact, youve
suffered a $500 loss: Had you sold the chemical, you would have had $11,000
in the bank and $11,000 beats $10,500. From this, we see both the danger of the
naı̈ve view and the benefit of adopting the opportunity-cost view.

This scenario also illustrates two concepts that derive from opportunity
cost, imputed cost and sunk expenditure .

29
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An imputed cost (e.g., the $11,000 in the above scenario) is a cost not associ-
ated with an expenditure; that is, you dont have to pay anyone $11,000 to use

Imputed cost: The
imputed value of a
forgone opportunity. the chemical, but it’s a cost of your using the chemical nonetheless.

A sunk expenditure is an expenditure that has been made—sunk—in the
past or an expenditure that one will make regardless of which of the relevant

Sunk expenditure:
An expenditure is
sunk if it cannot be
recovered or
avoided over the
relevant
decision-making
horizon. A sunk
expenditure is not a
cost.

alternatives is chosen (e.g., because of a previously made commitment).1

In particular, what you paid for machinery, property, services, inputs, or
any other item in the past is not a cost todayit is sunk. Moreover, a past ex-
penditure is irrelevant to any decision you are making now. As the old saying
goes, “there is no point crying over spilled milk.” Or, in terms of decision trees,
one can view a past expenditure as a constant amount subtracted from all the
payoffs. Given the discussion in the previous chapter, you should readily be
able to convince yourself that decisions don’t change if one subtracts the same
amount from all payoffs.

Note, however, an expense doesn’t have to have been made in the past to
be sunk. Any expense, even one not yet paid, is sunk if it cannot be avoided
given the relevant set of actions from which the decision maker must choose.

Some examples will further illustrate the benefits of adopting the opportunity-
cost view.

Example 2: Your store is situated in rented space. Your lease expires in
six months time and you cannot break it prior to then. Monthly rent is
$5000. Your other monthly expenditures (e.g., inventory, sales help, etc.)
are $3000, for total monthly expenditures of $8000. Your monthly revenue
(sales) total $6000. You are considering whether to shutdown effective im-
mediately. This might seem an attractive course of action: After all it would
seem youre “losing” $2000 a month. This, however, is an incorrect as-
sessment of the situation. What is the opportunity cost of staying open?
Well, if you stay open, your expenditures will be $8000 per month. If you
shutdown, your expenditures will be $5000 a month (remember you can’t
break your lease). Thus, the true (opportunity) cost of staying open is $3000
(= $8000 − $5000): Relative to your best alternative (shutting down), you
are only forgoing $3000 by staying open. Given that your true costs are
half of your monthly revenues, you would choose to remain open over the
next six months. To see it another way, note that your bank account will
be $30,000 poorer at the end of six months if you shutdown (6 × ($5000));
whereas, if you remain open, your bank account will be only $12,000 poorer
at the end of six months (6 × ($6000 − $5000 − $3000)).

By employing the concept of opportunity cost you saved yourself $18,000 in
the preceding example. This is because you recognized that the rent over the
next six months was not a cost, but rather a sunk expenditure.

Example 3: You run a theater. At the moment, the show that you’re run-
ning sells on average 100 tickets per night (you are risk neutral). The ticket

1An expenditure that is sunk is sometimes called a sunk cost. This, however, is unfortunate
terminology, because if an expenditure is sunk than it is not a cost with regard to the decision at
hand.
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price is $50 per ticket. The nightly expenses of the show are $3000 and these
are essentially independent of the number of people who attend. A local
civic group approaches you about purchasing all the tickets in the house
(300) for a given evening. Because they are a charitable group, they ask if
you might be willing to sell them the tickets at a discount of $25 per ticket.

What is your cost of doing this? First, recognize the $3000 is wholly
irrelevant. Why? Well whether or not you sell to this group, the show will
run. The expenses of the show are, thus, sunk, and, thus, not a cost. The
cost, remember, is the value of what you give up. What you give up are the
100 tickets sold at $50 per ticket; that is, $5000. So the cost of your donation
is $5000.

Observe that, in both examples, the answer is dependent on the decision
problem you face. In Example 2, over the relevant decision-making horizon— the
next six months—the monthly rent is sunk. Were you, however, deciding to re-
new the lease at the end of the six months, then the rent would be a cost because
you could avoid it by shutting down (i.e., by not renewing the lease). Likewise,
in Example 3, you are already committed to running the show. Hence, any
expenses associated with running the show are sunk with respect to other de-
cisions, such as whether to sell to the civic group at a discount. Had, however,
the decision been a different one, specifically whether or not to close the show,
then the nightly expenses of running the show would be a cost because they
could then be avoided. Both of these examples illustrate one test for whether
an expense is a cost: Is there a branch (outcome) of the relevant decision tree in
which you avoid the expense? If the answer is no, then the expense cannot be
a cost.

Conclusion. If, within the set of relevant decisions, an expense is unavoidable, then
it is not a cost.

Example 4: Your company owns a warehouse. Currently, the warehouse
is in such poor condition that it cannot be used. Your company would have
to spend $500,000 to make it usable. If made usable, the value to your com-
pany, if it uses it over its productive life, is $300,000. You are also aware
that another company, in a different industry than you, is looking to pur-
chase a warehouse and would certainly purchase your warehouse if it were
usable (note, then, this other company would not buy your warehouse “as
is”). In thinking about what sales bid to make to this other company, is the
$500,000 a cost; that is, relevant to your decision? What would your answer
be if the value to your company of a usable warehouse was $600,000?

Under the original conditions (i.e., the value to you of repaired ware-
house is $300,000), the $500,000 is most certainly a cost. If you sell your
warehouse you will have to spend $500,000. If, instead, you pursue your
next best alternative— which is do nothing with the warehouse—you don’t
spend the $500,000. On the other hand, if the value to your company of a
repaired warehouse were $600,000, then the $500,000 is not a cost; you will
incur the expense if you sell the warehouse or if you pursue your next best
alternative, which, now, is to use the warehouse yourself.
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Example 4 suggests another test to see whether an expense is a cost, namely
the question of cost causation:

Conclusion (Cost causation). If a decision causes you to incur an expense that you
wouldn’t incur under the next best alternative, then that expense is a cost; it has been
caused by your decision. Conversely, if an expense would have also been incurred
under the next best alternative, then it is not a cost of your decision.

As an additional example, consider the following.

Example 5: You may have noticed or read that when oil prices jump up
(say because of Mideast unrest), prices at your local gas station quickly
follow suit. Yet, as newspaper articles are quick to point out, the gasoline
in your local gas station’s tanks was produced from oil purchased at the
old, lower, prices. Is your local gas station engaged in price gouging, as
some allege, or is there a sensible opportunity-cost explanation?

It won’t surprise you that the latter is the answer. One way to think
about it is as follows. The wholesale price of new gasoline will be higher
than the wholesale price previously paid.2 “Old” and “new” gasoline are
perfect substitutes, so your local gas station could, in theory, resell the gas
in its tanks to other stations in the wholesale market. In other words, the
situation is like the chemical example considered at the beginning of this
section.

Even if reselling the gasoline in the wholesale market isn’t feasible, the
opportunity cost of selling the gasoline already in the tanks has increased.
A rise in oil prices must, ultimately, lead to an increase in gasoline prices.
Gasoline today is a substitute for gasoline tomorrow. So an alternative
available to your local station is to choose not to sell gasoline now and to
wait until the price goes up, at which time it can sell the gasoline it holds
at the higher price.

Example 5 illustrates an example of decision makers’ thinking about costs
correctly. Yet, there are many cases in which business people fail to do so. One
situation is when business people consider historic prices, such as those paid
for inputs, as relevant for current decision making; that is, failing to recog-
nize them as sunk. For instance, a well-known computer manufacturer used
the price it had paid for the memory chips in its inventory when it priced its
computers, ignoring the fact the price of these memory chips had fallen con-
siderably from the time they had been purchased. By using historic price,
rather than the chips’ current value, the manufacturer overestimated its true
costs. This, in turn, caused it to overprice its computers. As a consequence, it
lost a considerable amount of market share and profit. In another example, a
well-known car manufacturer, seeking a competitive advantage, hired people
to forecast metal prices. The idea was that it would buy and stockpile met-
als whose prices were forecast to increase. Then, later, it would have “cost
advantage” over its rivals when it used that metal in manufacturing. While

2The wholesale price is what the gas station pays its supplier for the gasoline it purchases to
sell to consumers.



2.2 Cost Concepts 33

speculating in commodity markets, such as metals, might be an okay invest-
ment strategy for the firm, it can’t provide any cost advantage if the metal is
ultimately used in manufacturing—the cost of the metal is its market value at
the time it is used, not what was paid for it in the past.

As a final example of opportunity costs at work, consider the following.

Example 6: A large conglomerate knows now that it will need to send
50 mid-level executives to a two-day convention in Miami in February.3

That is high season and hotels are routinely filled to capacity. Any hotel
suitable for these executives charges $250 a night per guest. Seeking to
avoid paying $25,000, someone in the conglomerate notes that it happens to
own a suitable hotel in Miami. Said person proposes that the 50 executives
just stay at that hotel for free; further claiming that the cost will be only the
cost of room maintenance, which is $50 per night; that is, cost will be only
$5000.

Whatever the advantages of a conglomerate, this is not one. This some-
one has made a fundamental error. Recall that hotels sell out. Hence, what
the company is forgoing by lodging its executives at one of its hotels is not
$50 per night (it would pay that whether an executive is lodged in a room
or an outside guest is), but rather $250, the forgone revenue from renting
the room to an outside guest. That is, the cost per night is still $250—no
savings can be achieved by this proposal.

Example 6 illustrates a rather common mistake, assuming that because one
owns an asset, its use is free. Typically, unless there is no alternative use of the
asset, its use is not free. The cost of using it is the value of its next best use (in
Example 6, for instance, renting the rooms to outside guests).

A formula that can help relate expenditures to costs is the following:

Cost: Expenditures
plus imputed costs
less sunk
expenditures.Cost = Expenditures− Sunk Expenditures+ Imputed Costs .

Cost Concepts 2.2
Consider a firm that makes a single product. Suppose that every morning,
prior to the start of production, the machines used for production must be
maintained. Suppose this costs $100 per day. Suppose each unit of the product
requires $5 worth of raw materials, $8 worth of labor, and will cost $2 to ship.
What is the cost of selling a single unit of the product? The answer depends on
the decision-making horizon: If it is mid-day and the firm has been producing
all morning, then the cost of a unit is $15 (= $5 + $8 + $2); if, however, it is the
first unit of the morning, then the cost is $115.

To understand these answers, recognize that the cost incurred by maintain-
ing the machines is different than the costs incurred by producing an additional
unit. Maintenance costs are, here, costs that are incurred once and that do not

3This is example is based on an actual incident.
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depend on the number of units produced. That is, they are incurred when the
firm decides to produce that day (go from the 0th unit to the 1st unit). A cost
that is incurred when a firm decides to produce rather than shutdown over the
relevant decision-making horizon (here, a day) and that does not vary with the
total number of units produced is an overhead cost .4

Overhead cost: A
cost incurred by
operating that does
not vary with the
number of units
produced.

In contrast, the expenditures on raw materials, labor, and shipping are,
here, examples of variable costs; that is, costs that vary with each unit pro-
duced.

Variable cost: A
cost that varies with
the number of units
produced.

Now these distinctions might strike you as odd: Why not simply use the
total amount spent on producing a day’s output divided by a day’s output as
the cost per unit of output (this measure is called average cost )?5 For example,

Average cost: The
total cost of
production divided
by the number of
units produced.

if this firm produced 20 units today, why not simply treat the cost per unit as
$20 (= (20 × $15 + $100)/20)? There are two reasons why this is a bad idea.
First, it depends on the number actually produced. If the firm’s output var-
ied, would you really want to think that its unit costs are varying even though
the technology and input prices (e.g., the cost of raw materials) had remained
unchanged? The second, and more important reason is that this approach vi-
olates the fundamental notion of cost: The cost of an activity (e.g., producing
the 20th unit) is the value of the next best alternative (e.g., stopping at the 19th
unit). Here, if you stopped at the 19th unit you would save just the additional
$15 that you would need to spend to produce a 20th unit. Over the relevant
decision-making horizon—make or don’t make a 20th unit given that 19 units
have already been made—the daily maintenance cost is sunk and, thus, not a
cost over that decision-making horizon. To make this more concrete, consider
the following example.

Example 7: Suppose the firm under consideration gets an order to produce
20 units for $21 per unit. The firm will accept this order because

20 × $21
︸ ︷︷ ︸

revenue

− (20 × $15 + $100)
︸ ︷︷ ︸

cost

= $20 ;

that is, the firm will make a positive profit. Suppose, after the firm has
started production, someone else calls in an order for 10 units at $18 per
units. Should the firm accept this second order? Well if it mistakenly used
average cost, $20, as its cost per unit, it would reject the offer because it
would “lose” $2 per unit. If, however, it used the correct cost per unit,
namely $15, it would accept the offer because it would make a $3 profit per
unit. To verify that this is, indeed, the correct cost concept—that is, leads
to the correct decision—observe that

20 × $21 + 10 × $18
︸ ︷︷ ︸

revenue

−
(
(20 + 10)× $15 + $100

)

︸ ︷︷ ︸

cost

= $50 > $20 .

4Overhead costs are sometimes referred to as fixed costs. The latter is, however, unfortunate
terminology: If some expenditure were truly fixed (i.e., immutable), then it could not be a cost (it
would be sunk).

5Observe that average cost, abbreviated AC, is cost, C, divided by the number of units pro-
duced, x. That is, AC = C/x.
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This last example shows the importance of using marginal cost—the ad-
ditional cost incurred by producing one more unit—in deciding how much to
produce. In Example 7, the marginal cost of the 20th unit is $15 because, as

Marginal cost: The
marginal cost of the
nth unit is the
additional cost
incurred by
producing the nth
unit.

previously argued, $15 is the additional cost incurred by producing the 20th
unit. Note that we can equivalently define marginal cost as

Marginal cost of nth unit = Cost of producing all n units

− Cost of producing n − 1 units.

Rather than writing out “marginal cost of” and “cost of producing all,” we will
use the notation MC(n) to denote the marginal cost of the nth unit and C(n) to
denote the cost of producing all n units. We will also refer to C(n) as the total
cost of producing n units.

Given the importance of the marginal cost concept, it is worth considering
two more examples.

Example 8: Suppose the firm under consideration had to maintain the ma-
chines after every fifty units; that is, before producing the 1st, 51st, 101st,
etc., units. Consequently, the marginal cost of the 1st unit is $115, as is the
marginal cost of the 51st unit, the 101st unit, etc. The marginal cost of all
other units remains just $15.

Example 9: Return to the assumption that the machinery only needs to be
maintained once a day, first thing in the morning. Suppose, now, that if the
firm produces 250 or more units, it needs to pay time-and-a-half overtime
to its employees; that is, the cost of labor per unit rises to $12 per unit. Then
the marginal cost of the first unit is $115. The marginal cost of the nth unit,
1 < n < 250, is $15. But now the marginal cost of the mth unit, m ≥ 250, is
$19 (= $5 in raw materials + $2 in shipping + $12 in labor).

Relations Among Costs 2.3
In this section we explore the relations among total cost, average cost, and
marginal cost from an algebraic perspective.

First, observe that the total cost of producing nothing (i.e., C(0)) must be
zero. Why? If you’re producing nothing, then you aren’t forgoing anything by
producing, so the cost must be zero.

Conclusion. C(0) = 0.

Turning into notation the definition of marginal cost given in the last sec-
tion, we have

MC(n) = C(n)− C(n − 1) . (2.1)
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Using expression (2.1), observe that we can express total cost as follows.

C(n) = C(n)− C(0) (recall C(0) = 0)

= C(n)− C(n − 1) + C(n − 1)
︸ ︷︷ ︸

+0

− · · · − C(1) + C(1)
︸ ︷︷ ︸

+0

−C(0)

= C(n)− C(n − 1)
︸ ︷︷ ︸

MC(n)

+ · · ·+ C(1)− C(0)
︸ ︷︷ ︸

MC(1)

(associative rule)

= MC(n) + · · ·+ MC(1) =
n

∑
j=1

MC(j) .

We can summarize this as

Proposition 1. The total cost of producing n units is the sum of the marginal costs of
producing the first n units; that is, C(n) = ∑

n
j=1 MC(j).

Recall that average cost of producing n units is

AC(n) =
C(n)

n
;

that is, average cost is total cost divided by the number of units produced.
Using Proposition 1, we can rewrite this last expression as

AC(n) =
∑

n
j=1 MC(j)

n
. (2.2)

A baseball analogy may help to explain expression (2.2). Think of MC(j) as
being 1 if a batter gets a hit on his jth at bat and as being 0 if he does not (to
simplify matters, assume no walks, no errors, no hit batters, etc.). A batter’s
average, recall, is just the number of hits he gets divided by his number of at
bats. It follows that expression (2.2) is the formula for his batting average.

We can also use this baseball analogy to consider how AC changes with MC.
If a batter gets a hit at his latest at bat, his average goes up (a hit is like batting
1.000, which is greater than his average to that point). If he doesn’t get a hit,
his average goes down (failing to hit is like batting .000, which is less than his
average to that point). In other words, we have

MC(n + 1) > AC(n) , then AC(n + 1) > AC(n) ; and

MC(n + 1) < AC(n) , then AC(n + 1) < AC(n) .

Another way to state this conclusion is

Proposition 2. If average cost is declining, then marginal cost is less than average
cost. If average cost is increasing, then marginal cost is greater than average cost.
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Costs in a Continuous
Context 2.4

For some goods (e.g., liquids) a unit is a fairly arbitrary notion. Not only could
we have liters versus quarts, say, but we can also half liters, quarter liters, and
so forth. Likewise we could have tons, half tons, quarter tons, and so on of coal
or wheat. For such goods it is useful to treat costs as continuous functions of
output. Even for goods for which a unit is clearly defined (e.g., shirts), it can
prove convenient to act as if a continuum of units can be produced.

In such contexts, we treat the cost function, C(x), as being a continuous
function of output, x.6,7 That is, we can talk of the cost of producing one liter,
C(1), the cost of producing 2.5 liters, C(2.5), and so forth.

We define average cost as before, namely total cost divided by units. That
is, AC(x) = C(x)/x. The average cost of 2.5 liters, AC(2.5), would, thus, be
C(2.5)/2.5. Note that because C(·) is a continuous function, AC(·) is also a
continuous function.

Marginal cost is a bit trickier. The incremental cost of producing h more
units of a good is easy enough to calculate, it is C(x + h)C(x). Marginal cost, �
however, is a statement about the incremental cost per unit. That is, marginal
cost can be seen, roughly, as the average of the incremental cost. That is,

MC(x) ≈ C(x + h)− C(x)

h
, (2.3)

where the symbol ≈ means “approximately equal to.”
An analogy may help. Suppose you have driven t hours. If you drive one

hour more, then it is easy to calculate your speed:

speed =

(
D(t + 1)− D(t)

)
km

1 hour
,

where D(·) is your distance from your starting place as a function of time.
Note the division by 1 hour, reflecting our desire to have speed measured as
km per (whole) hour. Of course, we could also determine your speed after
you’ve driven just a half hour:

speed =

(

D(t + 1
2 )− D(t)

)

km

1
2 hour

.

We divide by 1/2 hour because we want to express speed in terms of km per
hour, not km per half hour. This explains why we divide by h in expression

6The cost function is sometimes called the cost schedule . In general, the word “schedule” is a
synonym for “function.”

7 ∫
dx As a technical matter, we also take C(·) to be differentiable except, possibly, at 0. that is,

C′(x) is defined for all x > 0.
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(2.3), we want to express the increment in cost per (whole) unit. Of course
these speed calculations only tell us the average speed you travelled over the
hour or half hour respectively. At some points, you might have gone faster
and at some points you might have gone slower. For this reason, if we wanted
to know your speed at a particular moment in time, we would ideally like to
consider a very small time interval—indeed, the smaller the better. That is, if
we want to know your speed at time t, the best measure would be

speed =

(
D(t + h)− D(t)

)
km

h hour
,

where h is some small fraction of an hour (say, 1/3600th of an hour, that is, a
second).

Likewise, we typically want to know not the average incremental cost over
some interval, but the incremental cost (per whole unit) at a specific point.�
We can do this by calculating expression (2.3) with as small an h as possible.
Indeed, we want to do it as h goes to zero. That is, for continuous cost functions
we define MC by

MC(x) = lim
h→0

C(x + h)− C(x)

h
, (2.4)

where “lim” means the limit of that ratio as h goes toward zero.8 For instance,
suppose that C(x) = 4x. Then

C(x + h)− C(x)

h
=

4 × (x + h)− 4x

h
=

4h

h
= 4 .

Clearly, as the expression doesn’t depend on h, the limit as h goes to zero is 4;
that is, if C(x) = 4x, then MC(x) = 4. In fact, replacing 4 with any constant γ,
we have, if C(x) = γ × x

C(x + h)− C(x)

h
=

γ × (x + h)− γ × x

h
=

γ × h

h
= γ .

Hence, if C(x) = γ × x, then MC(x) = γ.

8For example, suppose C(x) = x2 and we want to know MC(1). If h = 1, then our approxima-
tion is

22 − 12

1
= 3 .

If h = 1/2, then our approximation is

1.52 − 12

.5
= 2.5 .

If h = 1/4, then the approximation is 2.25. If h = 1/8, then 2.125. If h = .0001, then 2.001. The
limit is the number that this sequence approaches as h goes to zero, which looks to be 2. Indeed,
as shown later (see Proposition 3), it is 2.
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As a second example, suppose C(x) = αx2 + βx, where α and β are con-
stants. Then

C(x + h)− C(x)

h
=

α(x2 + 2xh + h2) + β(x + h)− αx2 − βx

h

=
2αxh + αh2 + βh

h
= 2αx + αh + β .

As h goes to zero, this last expression goes to 2αx + β; that is, if C(x) = αx2 +
βx, then we’ve shown that MC(x) = 2αx + β.

Sometimes, there is an overhead cost associated with production. For in-
stance, a chemical plant might have the following cost schedule:

C(x) =

{
0 , if x = 0
c(x) + F , if x > 0

;

that is, if the firm decides to produce at all, then it incurs an overhead cost of F,
F > 0, as well as a variable cost of c(x). This cost function is discontinuous at
x = 0 and, thus, we cannot define MC(0). Nevertheless, we can define MC(x)
for x > 0 using expression (2.4)–the F doesnt matter if x > 0:

MC(x) = lim
h→0

(
c(x + h) + F

)
−
(
c(x) + F

)

h
= lim

h→0

c(x + h)− c(x)

h
.

We can summarize our analysis of specific functional forms as follows:

Proposition 3. Let C(x) = αx2 + βx + F, where α, β, and F are non-negative
constants (i.e., each is greater than or equal to zero). Then MC(x) = 2αx + β for
x > 0. If F = 0 (i.e., there is no overhead cost), then MC(0) is defined and is equal to
β.

∫
dx Marginal Cost as Derivative

If you’ve had calculus, you no doubt recognize expression (2.4) as
the definition of a derivative. That is, we have

MC(x) =
d

dx
C(x) = C′(x) .

A Graphical Analysis of Costs 2.5
We can also understand the relations among C(x), MC(x), and AC(x) graphi-
cally.

For instance, because AC(x) = C(x)/x, it follows that

C(x) = xAC(x) . (2.5)
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units (x)

$/unit

x̂

AC(x̂)

C(x̂)

AC(x)

Figure 2.1: Total cost of x̂ units is the area of the rectangle with width x̂ and
height ACx̂.

We can illustrate this graphically. See Figure 2.1. In this figure, I have plotted
AC (in red) as a function of units, x. Because AC is in dollars per unit, the
vertical axis in Figure 2.1 is in terms of $/unit. Consider a specific number of
units, x̂. Suppose x̂ is the width of a rectangle whose height is AC(x̂). The
area of this rectangle (shown in gray in Figure 2.1) is its width times height, or
x̂AC(x̂), which, from expression (2.5), is C(x̂). That is, the total cost of x̂ units
can read off the graph of average cost as the area of the rectangle formed by x̂
and AC(x̂).

We can also relate MC and AC. Consider Figure 2.2. The average cost sched-
ule is the same as in Figure 2.1. To this, I have added the marginal cost schedule
shown in black. Consistent with Proposition 2, we see that MC(x) < AC(x) for
x at which AC(·) is decreasing (headed downward) and that MC(x) > AC(x)
for x at which AC(·) is increasing (headed upward). It follows, therefore, that
at the point at which AC(x) is at a minimum, x∗, MC and AC must coincide;
that is, MC(x∗) = AC(x∗).

Proposition 4. The marginal cost schedule intersects the average cost schedule at the
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units (x)

$/unit

x∗

AC(x)

MC(x)

Figure 2.2: Average cost is falling whenever it exceeds marginal cost and it is
increasing whenever it is less than marginal cost. The minimum of
average cost occurs where marginal cost cuts average cost from
below.

minimum of average cost.9

Finally, we can relate MC and total cost graphically. Figure 2.3 shows a plot
of the marginal cost schedule. Because MC is expressed in terms of dollars
per unit, the vertical axis is labeled $/unit. The marginal cost schedule that is
plotted in this figure corresponds to a good that is produced in discrete units.
That is,

MC(n) = C(n)− C(n − 1) .

Observe the gray area beneath the MC schedule has been divided into rectan-
gles. Each rectangle has width 1. The height of the nthe rectangle is MC(n).
Recall that the area of a rectangle is height times width, so the area of the nth
rectangle is MC(n). But this means that the area under the MC schedule from

9 ∫
dx Observe that, because AC(x) = C(x)/x, it follows that

AC′(x) =
xC′(x)− C(x)

x2
=

xMC(x)− C(x)

x2
.

When AC is at a minimum, AC′(x) = 0. This means that the numerator of the last expression
equals zero: xMC(x)− C(x) = 0. Dividing both sides by x and rearranging yields

MC(x) =
C(x)

x
= AC(x) .

Observe, then, this argument proves that at every local minima of AC(·), AC = MC.
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units (x)

$/unit

1 2 3 4 5 6 7 8

MC(x)

Figure 2.3: A marginal cost schedule has been plotted. The area beneath
the marginal cost schedule between two points corresponds to the
difference in total costs between those two points.

n to m, m > n, units is

Area under MC from n to m = MC(n + 1) + · · ·+ MC(m)

=
m

∑
k=n+1

MC(k) .

Recall that

C(n) =
n

∑
k=1

MC(k) .

Hence,

C(m)− C(n) =
m

∑
k=n+1

MC(k)

= Area under MC from n to m.

This is a general result:

Proposition 5. The area beneath the marginal cost curve between two points x1 and
x2, 0 < x1 < x2, equals C(x2)− C(x1).

Note, although we derived Proposition 5 using the case of a discrete good (e.g.,
cars), the result applies equally well to the case of a continuous good (e.g., a
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chemical). Thus, for example, the area under the marginal cost schedule of a
chemical between 4.8 and 5.3 metric tons equals C(5.3)− C(4.8).

Moreover, it should be noted that Proposition 5 reflects a general result
about the relation between marginal and total functions:

Proposition 6. The area beneath any marginal curve between two points, x1 and x2,
x1 < x2, equals G(x2)− G(x1), where G(·) is the corresponding total schedule.10

In Proposition 5, we required that x1 > 0. Why? Because, if there is an
overhead cost and the good in question is continuous, then MC(0) is not well
defined. Fortunately, we can consider, in that case, the MC schedule starting ar-
bitrarily close to zero. The area to the left of our arbitrarily close starting point
is negligible and can, thus, be ignored. Hence, the area under the marginal cost
curve starting almost from zero to some point x must be the total variable cost
of x units. Total cost is the sum of variable and overhead cost. Hence, C(x)
is the area under the marginal cost schedule starting almost at 0 to x plus the
overhead cost.

Proposition 7. If there is an overhead cost, F > 0, and units are continuous, then

C(x) = Area under MC from almost 0 to x + F .

∫
dx Total Costs as an Integral

Write

C(x) =

{
0 , if x = 0
c(x) + F , if x > 0

,

where F ≥ 0 is overhead cost and c(·) is the variable cost function.
Assume c(·) is differentiable. By the definition of a variable cost, it
must be that c(0) = 0.

Observe that for x > 0, MC(x) = c′(x). Because a single point
cannot affect the value of an integral, there is no loss in our treating
MC(0) as equaling c′(0); that is, it is immaterial how we define
MC(0) with respect to integration, so we’re free to define it as c′(0).

By the fundamental theorem of calculus,

c(x2)− c(x1) =
∫ x2

x1

c′(x)dx =
∫ x2

x1

MC(x)dx . (2.6)

Hence, the area under the marginal cost schedule between x1 and x2

is the difference in variable cost from producing x2 units as opposed
to x1 units. For x2 > x1 > 0,

C(x2)− C(x1) =
(
c(x2) + F

)
−
(
c(x1) + F

)
= c(x2)− c(x1) .

10 ∫
dx This is just the fundamental theorem of calculus.
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Therefore, we have

C(x2)− C(x1) =
∫ x2

x1

MC(x)dx (x2 > x1 > 0)

This is just Proposition 5.

If we let x1 = 0 in expression (2.6), we see

c(x2) =
∫ x2

0
MC(x)dx

(recall c(0) = 0). Substituting into the definition of C(·), we arrive
at

C(x2) = c(x2) + F =
∫ x2

0
MC(x)dx + F .

The Cost of Capital 2.6
As we saw in Section 2.1, whether an expenditure is a cost or not (i.e., sunk)
can depend on the decision-making horizon. Recall, for instance, Example 2.
Once locked into a lease, rent payments are not a cost. But, at the time of lease
renewal, they are a cost.

One might view capital expenditures (e.g., machinery, vehicles, plant and
facilities, etc.) similarly. That is, once purchased, the purchase price is a sunk
expenditure. Prior to purchase, the purchase price is a cost. Yet, while it is
definitely true that the price paid is sunk after purchase, this does not entail
there is no cost to using the capital. It would be costless only if, as with the
lease, there was nothing else that could be done. Typically, however, there is at
least one thing else that can be done with capital assets: resale.

The ability to resell capital goods creates two sources of imputed cost. To
identify them, consider a relevant decision-making horizon; namely, the time
between points at which you can resell the capital good or asset. This might, for
instance, be a day, a month, or longer depending on circumstances. Let V0 be
the value—the resale price—for this asset at the beginning, time 0, of the time
period and let V1 be its value—resale price—at the end of the period, time 1.
Let r be the amount that the firm can earn per dollar during this time period on
money optimally invested (this could just be the interest rate on funds banked).
If the firm sold the asset at the beginning of the period, time 0, then, at time 1, it
would have (1+ r)V0. If it sells it at the end of the period, time 1, then it would
have V1. The difference, (1 + r)V0V1, is what is forgone by using the asset over
the time interval; that is, it is the cost of using the asset.

Decompose this cost as follows:

capital cost = rV0
︸︷︷︸

forgone return

+ V0 − V1
︸ ︷︷ ︸

depreciation

. (2.7)
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Depreciation is the amount by which the resale value of an asset falls over
time. Depreciation is driven by two factors. First, using an asset often means
wear and tear, reducing the asset’s productive life and, hence, its resale value.
Second, changes that take place in technology over time can also lower resale
value (consider, e.g., that a computer with a pentium chip, even if never used,
is worth far less today than when it was first sold).

Divide the cost of capital, expression (2.7), by V0. This yields a capital-cost
rate equal to r + δ, where

δ =
V0 − V1

V0

is the rate of depreciation. From our earlier discussion, observe that δ is greater
the greater is the rate of wear and tear and the greater is the rate of technology
change.

Example 10: Suppose you are in the business of renting residential hous-
ing. In a stable housing market, the resale value of a house today is essen-
tially equal to its resale value next month (at least assuming normal use).
Ignoring tax considerations and the “joys of home ownership,” the value
of a house to a rational consumer is equal to the discounted value of the
rent payments she would have to make for equivalent housing; that is,11

V =
∞

∑
t=1

ρ

(1 + r)t
=

ρ

r
,

where ρ is the rental price. If you and your tenants face the same rate of
return (i.e., interest rate), then, in a stable housing market, it will be the case
that rental prices and house prices are related by the condition ρ = rV. In
other words, rental prices should equal the cost of the capital that the house
represents.

Let’s continue this example by supposing that house prices appreciate
suddenly. Then rents will go up, because V1 > V0, but those tenants with
leases will find themselves paying below market rates. This explains why,
in an appreciating housing market, average house prices are seen to be
rising faster than average rents.

Further consider a housing market with a forecast appreciation rate of
α, driven, perhaps, by in migration due to a strong labor market. The rate α
is like a negative δ, so the cost of renting a house over the relevant period is
(rα)V . Consequently, you, as a landlord, make a profit for any rent ρ(rα)V.

It is important to observe that depreciation (or appreciation) is determined
by the resale value of the asset, which is a function of the actual wear and tear
on the asset, as well as trends in the resale market (e.g., technological changes).
This should be contrasted with accounting measures of depreciation. Account-
ing measures employ formulæ that has little to no relation to actual changes in

11We can treat the value of the house as a perpetuity because, even though any one owner won’t
live forever, when he or she sells it, he or she will capture its expected future value (including
expected future resale value).
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market value. For instance, the IRS states that cars and computers have a use-
ful life of five years and allows them to be depreciated at the same rate. That
is, the accounting procedure acts as if their market values fall at the same rate.
Yet, experience tells us that the rates at which cars and computers actually lose
market value are very different.

Introduction to Cost
Accounting 2.7

This section introduces and explains some cost-accounting terminology. As
we saw with depreciation, accounting terminology overlaps considerably with
economic terminology. The problem is that, although the words are the same,
their meanings are not. What are deemed costs by accountants may not be costs
as weve defined them or they may not be properly allocated for the purposes
of making sound managerial decisions. In addition, some true costs can fail to
be accounted for by the accounting system.

On the other hand, accounting information is valuable informationit is not
to be disregarded. To exploit this information, however, one must learn to read
the information correctly and not be mislead by the terminology.

The principal goal of accounting

Although cost accounting serves many purposes, its principal purpose is to
account for the consumption of resources by the firm. In essence, accounting
seeks to determine where the money went. This is clearly a necessary activity
in any firm.

The problem and an example

A problem is that, in addition to accounting for expenditures, most accounting
methods also allocate expenditures. This allocation can be at odds with what
economics tells us.

To consider a simple scenario, suppose that a firm makes lefthanded scis-
sors and righthanded scissors on the same machine. The labor required for
each pair of scissors (unit) made is $1. The raw inputs for each pair of scissors
is $1. In addition, each time the machine is switched from one type of scissors
to the other, a set-up cost of $200 is incurred. Suppose the machine is set-up
once at the beginning of the day for righthanded scissors and, then, later in the
day it is switched to lefthanded scissors. Finally, suppose 900 righthanded scis-
sors and 100 lefthanded scissors are produced each day. Daily expenditure is,
therefore, $2400. A traditional accounting method for allocating these expendi-
tures would call the $2 per scissors incurred from labor and raw inputs a direct
cost. Hence, righthanded scissors incur $1800 per day in direct costs, while
lefthanded scissors incur $200 per day in direct costs. This traditional method
would also treat the set-ups as overhead and allocate this overhead between
the two types of scissors on the basis of units produced. Consequently, 90%
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of the $400 in daily overhead would be allocated to righthanded scissors and
10% of the $400 would be allocated to lefthanded scissors. The total “cost” of
righthanded scissors would be $2160 and the total “cost” of lefthanded scissors
would be $240 (note these sum to $2400). The per-unit “cost” of righthanded
scissors would, therefore, be $2.40 and the per-unit “cost” of lefthanded scis-
sors would also be $2.40. This allocation of expenditures would make it seem
that righthanded and lefthanded scissors were equally expensive to produce.
This conclusion, however, is wrong!

To see why it’s wrong, suppose the firm in question made only righthanded
scissors and was considering adding lefthanded scissors. How would expen-
ditures change? Making only righthanded scissors, there are no set-ups (except
on the very first day of production). So adding lefthanded scissors means in-
curring an additional $400 per day in set-up costs plus $200 in direct costs—
a total of $600. If the price at which scissors were sold was $5 per pair, then it
would not be profitable to add lefthanded scissors: total additional revenue =
$500 ¡ $600 = total additional cost. A conclusion that would have been missed
if the traditional allocation had been used.12

What this example illustrates is the danger of assigning costs by any means
other than cost causation.

Moral: Assign costs
by cost causation.

Accounting terminology

Basis of allocation: How shared overhead (see below) is allocated among dif-
ferent products. In the example above, set-up, which was treated as
shared overhead, was allocated on the basis of units produced. Other
common bases of allocation are labor hours and machine hours. A syn-
onym for basis is overhead rate.

Direct costs: expenditures that can be traced to a single product or activity. In
the example above, the $2 in labor and raw inputs are direct costs. See,
also, variable costs below.

Direct labor: the compensation paid to employees whose time and effort can
be traced to the product in question. The $1 in labor of each unit in the
example above would represent direct labor.

Direct materials: the raw inputs that can be traced directly to the product in
question. The $1 in raw inputs for each unit in the example above would
represent direct materials.

Fixed costs: expenditures that do not vary with the number of units produced
or that are not always increasing with the number of units produced.

Manufacturing cost: the sum of direct labor, direct materials, manufacturing over-
head, and work beginning in process inventory minus work ending in
process inventory.

12To verify: Daily profits if the firm produces both types is $2600 (= $5000− $2400). Daily profit
if it produces only righthanded scissors is $2700 (= $4500 − $1800).
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Manufacturing overhead: all manufacturing expenditures except for direct costs.
Included in manufacturing overhead are indirect materials, indirect la-
bor, maintenance, utilities, rent, insurance, depreciation, and taxes. Man-
ufacturing overhead is a product cost (see below). Manufacturing over-
head is sometimes called direct overhead or factory overhead.

Overhead: expenditures that are not directly attributed to a given unit of out-
put. For instance, in the example above, set-up costs are considered over-
head because they are not directly attributed to a given unit of output.13

Overhead pools: different accounts into which overhead may be divided if
the basis of allocation for these different accounts differ. For instance,
if someoverhead is to be allocated on the basis of labor hours and other
overhead is to be allocated on the basis of machine hours, then the first
set of overhead would be one pool and the second set of overhead would
be another pool.

Period costs: expenditures incurred during a given period of time (usually the
period that an accounting statement covers). They are not allocated to
the production process itself. If, in the above example, the firm in ques-
tion spent $100 per day marketing scissors, then this $100 would be a
period cost (assuming, unrealistically, that a daily accounting statement
was produced for the entire firm). Period costs are necessarily overhead.

Product costs: costs incurred during production that can be allocated to pro-
duction itself. In the example above, all the expenditures would be treated
as product costs.

Shared overhead: overhead common to more than one product. In the exam-
ple above, the salary of the factory manager would be shared overhead.

Unit cost: the accounting cost of a product divided by the number of units
produced. In the example above, the unit cost of a pair of scissors was
$2.40. Note that the unit cost is not the same as marginal cost. When
accounting cost equals economic cost, a synonym for unit cost is average
cost.

Variable costs: expenditures that vary with each unit produced. See direct
costs.

Example 11 [Parable of Red Pens and Blue Pens]: Once upon a time a
little firm made two products, red pens and blue pens. Each pen used
15 cents worth of labor and raw materials. Each pen was run through a
machine, the daily cost of which was $1000 regardless of how many pens
were run through or their colors. The firm could sell the first 5000 red pens

13From an economic standpoint, however, we could attribute the set-up costs to a given unit,
namely the first unit produced after the machine is switched. That is, for example, the marginal
cost schedule for lefthanded scissors is MC(1) = $202 and MC(2) = · · · = MC(100) = $2.
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it made each day at 30 cents each; additional red pens, however, were sold
at 20 cents per pen. The firm could sell all the blue pens it wanted at 25
cents per pen. The firm, however, could make no more than 8000 pens
a day and it could not expand over its relevant decision-making horizon.
The little firm chose to manufacture 5000 red pens and 3000 blue pens a
day for a daily profit of

$50 = 5000 × (.30 − .15) dollars+ 3000 × (.25 − .15) dollars− $1000 .

As this was greater than $0, the little firm was happy to produce.

One day an evil accountant came along and said the little firm should
adopt an accounting system that allocated shared overhead (e.g., the $1000
for the aforementioned machine). Being naı̈ve, the little firm went along.
The accountant chose to allocate the shared overhead on the basis of output—
thus, the red-pen line was billed $625, which is five eighths of $1000,14 and
the blue-pen line was billed the remaining $375. The new accounting is
shown in Table 2.1.

Pens Revenue
Direct
Cost

Shared
Overhead

Total
Expense Profit

Red Pens 5000 $1500 $750 $625 $1375 $125
Blue Pens 3000 $750 $450 $375 $825 −$75

Total 8000 $2250 $1200 $1000 $2200 $50

Table 2.1: The Evil Accountant’s New Accounting System

Upon examining the accounting data, the evil accountant snickered,
“Aha! Your blue-pen line is unprofitable—you should shut it down.” Du-
tifully, the naı̈ve little firm shut down its blue-pen line and switched over
to producing nothing but red pens. Now the firms revenues were

$2100 = 5000 × $0.30 + 3000 × $0.20 .

Because the blue-pen line was shut, the $1000 cost of the machine was fully
allocated to the red-pen line. The firm’s new accounting is shown in Ta-
ble 2.2.

Pens Revenue
Direct
Cost

Shared
Overhead

Total
Expense Profit

Red Pens 8000 $2100 $1200 $1000 $2200 −$100
Blue Pens 0 $0 $0 $0 $0 $0

Total 8000 $2100 $1200 $1000 $2200 −$100

Table 2.2: New Accounting After Blue-Pen Line Shut

14Allocating on the basis of output means taking the output of the red-pen line, 5000 pens, and
dividing it by total output, 8000 pens, to get the red-pen line’s share. Similarly, the blue-pen line’s
share would be 3000/8000 or 3/8.
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Upon examining the accounting data, the evil accountant chortled, “Aha!
Your entire company is unprofitableyou should shut down completely.”
Dutifully, the naı̈ve little firm did, shutting its doors forever. So thanks to
the evil accountant, the little firm went from making a tidy profit of $50 a
day to going out of business!

The moral of this parable is simple: Don’t allocate shared overhead, it can

Shared overhead
allocation: Has
nothing to do with
good decision
making.

only lead to dopey decisions.
In the lefthanded-righthanded-scissors example, the problem was that the

accounting system missed that an overhead cost should properly be allocated
fully to lefthanded scissors—this is a case where allocatable overhead is mis-
takenly treated as shared, with the mistake further compounded by allocating
it on the basis of an ad hoc rule. In the red-pens-blue-pens example, the over-
head cost shouldn’t be allocated to either line—it is true shared overhead. In
both examples, because the basis of allocation had nothing to do with cost cau-
sation, the accounting gave a misleading picture of what was going on.

Summary 2.8
The key takeaways of this chapter are:

• To make the best business decisions, remember the cost of something
is the value of the best forgone alternative. That is, use the notion of
opportunity cost.

• Cost = Expenses − Sunk expenditures+ Imputed costs.

• Sunk expenditures are irrelevant for decision making.

• Understand marginal cost (MC) and average cost (AC), as well as their
relations between each other and with total cost (C).

• Understand the cost of capital.

• Cost causation is the right way to allocate costs. Allocation of overhead
on any other basis will be misleading for decision making (recall left-
handed and righthanded scissors).

• Shared overhead should not be allocated for the basis of decision making
(recall red pens and blue pens).



Introduction to
Pricing 3

This chapter describes how to figure out the optimal price and quantity if your
firm is engaging in simple pricing; that is, pricing in which the firm sets a given
price per unit, which is paid by all customers, each of whom is free to buy as
many units at that price as he or she desires.1 After defining “optimal,” we
will discuss the concept of marginal revenue at length. While there is some
involved analysis required, the topic justifies the pain. Optimal pricing and
quantity setting in this context means making as much money as possible. The
important takeaways from this chapter are

• Marginal revenue equals marginal cost at the optimal quantity produced
(this equality may be approximate in the case of discrete goods).

• Marginal revenue comes from an underlying demand curve. You should
know how to derive a marginal revenue curve from a demand curve as-
suming simple pricing.

• Demand curves themselves come from consumer preferences and from
the prices of all goods. You should be able to evaluate the effects of
changes in preferences and these other prices on your best choices.

Simple Pricing Defined 3.1
This note discusses optimal pricing of a product by a firm that must charge the
same price per unit to all of its consumers.

Definition. A firm engages in simple pricing for a particular product if that product
is sold for the same price per unit no matter who the buyer is or how many units the
buyer purchases.

Observe that simple pricing is nondiscriminatory pricing.
In subsequent chapters, we will consider the possibility that a firm chooses

to charge either different prices to different individuals or prices in such a way
that a consumers expenditure is not a simple multiple of a per-unit price (i.e.,
his or her expenditure is not proportional to quantity purchased). Simple pric-
ing applies when the identity of the buyer cannot be observed or inferred at
reasonable cost. It also applies when the seller cannot prevent arbitrage among

1This is sometimes called linear pricing .
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buyers when buyers can purchase multiple units. Arbitrage means taking ad-
vantage of an ability to buy low and sell high. So, if one set of buyers faces
a lower price than another set and the former can resell to the latter, then the
consequent arbitrage opportunity will force a single price to hold. For exam-
ple, if a chemical producer proposed to charge a different price for the same
chemical depending on the buyers industry, then those buyers in the industry
facing a low price could resell to those buyers in the industry facing the high
price and reap a profit. The producer would, effectively, be limited to a single
price, the lowest one it sets.

Profit Maximization 3.2
Note: The topics considered in this and following sections are quite general
and pertain not only to simple pricing, but other forms of pricing as well.

A firm’s profit is the revenue it takes in minus its cost. If we let R(x) be theProfit: Is revenue
minus cost firm’s revenue from selling x units, then its profit from selling x units, π(x), is

R(x)C(x), where C(x) is the total cost of x units.
If the firm sets a price of p per unit—engages in simple pricing—then R(x) =

px.
In choosing the amount to produce and sell, the firm seeks to find the quan-

tity, x, that maximizes profit, π(x). Under the real-life conditions that govern
revenue and cost, an x that maximizes π(x) must exist. Let’s use an asterisk to
denote that quantity (e.g., x∗, n∗, etc.).

Suppose, first, that we are considering a discrete good (e.g., shirts) rather
than a continuous good (e.g., a liquid). Saying that n∗ is the profit-maximizing
amount is the same as saying that π(n∗) ≥ π(n) for all other n. In particular,
consider the quantities n∗ − 1 and n∗ + 1. We know that

π(n∗) ≥ π(n∗ − 1) and (3.1)

π(n∗ + 1) ≤ π(n∗) . (3.2)

Substituting R(n)− C(n) for π(n) yields

R(n∗)− C(n∗) ≥ R(n∗ − 1)− C(n∗ − 1) and

R(n∗ + 1)− C(n∗ + 1) ≤ R(n∗)− C(n∗) ;

or, further rearranging,

R(n∗)− R(n∗ − 1) ≥ C(n∗)− C(n∗ − 1)
︸ ︷︷ ︸

MC(n∗)

and

R(n∗ + 1)− R(n∗) ≤ C(n∗ + 1)− C(n∗)
︸ ︷︷ ︸

MC(n∗+1)

.
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If we define MR(n) = R(n)− R(n − 1), we can rewrite these last expressions
as

MR(n∗) ≥ MC(n∗) and (3.3)

MR(n∗ + 1) ≤ MC(n∗ + 1) . (3.4)

What is MR(n)? It is the change in revenue incurred by selling the nth unit

Marginal revenue:
The change in
revenue from selling
an additional unit.

rather than selling only n − 1 units and it is called marginal revenue .

Expression (3.3) tells us that for n∗ to be the profit-maximizing quantity,
then the marginal revenue from the nth unit needs to be at least as great as
the marginal cost of the nth unit—which makes sense; if it weren’t true (i.e.,
MR(n∗) < MC(n∗)), then, whatever the gain in revenue from the n∗th unit,
it is outweighed by the additional cost of producing the n∗th unit. Hence, it
wouldnt be sensible to produce n∗ units (n∗ − 1 units would be better). Ex-
pression (3.4) tells us that for n∗ to be the profit-maximizing quantity, then the
marginal revenue from the n∗ + 1st unit cannot exceed the additional cost in-
curred by producing the n∗ + 1st unit; that is, that n∗ + 1 units cannot be better
than n∗ units.

Proposition 8. A necessary condition for n∗ to be the profit-maximizing output is
that expressions (3.3) and (3.4) both hold true.

The Continuous Case 3.3
As noted in the previous chapter, for some goods, a unit is a fairly arbitrary
notion, and amounts of such goods can be treated as continuous. Moreover,
even for discrete goods, it is simply easier sometimes to treat quantity as an
approximately continuous variable.

As with cost, we need to define marginal revenue in the continuous context.
To that end, by analogy to expressions (2.3) and (2.4) in Section 2.4, we define
MR as

MR(x) = lim
h→0

R(x + h)− R(x)

h
. (3.5)

For example, if R(x) = Ax − Bx2, where A and B are constants, A > 0 and
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B ≥ 0, then

MR(x) = lim
h→0

(
A(x + h)− B(x + h)2

)
− (Ax − Bx2)

h

= lim
h→0

Ax + Ah − Bx2 − 2Bxh − Bh2 − Ax + Bx2

h

= lim
h→0

Ah − 2Bxh − Bh2

h

= lim
h→0

A − 2Bx − Bh

= A − 2Bx .

It will be useful to memorialize this example:

Proposition 9. If R(x) = Ax − Bx2, A > 0 and B ≥ 0, then MR(x) = A − 2Bx.

In the continuous case, we can rewrite the conditions for x∗ to be the profit-
maximizing quantity, expressions (3.1) and (3.2), as

π(x∗) ≥ π(x∗ − h) and

π(x∗ + h) ≤ π(x∗) .

Substituting R(x)− C(x) for π(x) and rearranging yields

R(x∗)− R(x∗ − h) ≥ C(x∗)− C(x∗ − h) and

R(x∗ + h)− R(n∗) ≤ C(x∗ + h)− C(n∗) .

Dividing both sides of those inequalities by h and taking limits as h goes to
zero yields

MR(x∗) ≥ MC(x∗) and

MR(x∗) ≤ MC(x∗) .

The only way both inequalities can be satisfied is if

MR(x∗) = MC(x∗) . (3.6)

We can conclude, therefore, as follows:

Proposition 10 (MR = MC rule). In the continuous case, a necessary condition for
x∗ to be the profit-maximizing output is that MR(x∗) = MC(x∗).

∫
dx Profit Maximization

If you’ve had calculus, you no doubt recognize expression (3.5) as
the definition of a derivative. That is, we have

MR(x) =
d

dx
R(x) = R′(x) .
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Consider maximizing profits. We know that a function (e.g., π(·)) is
increasing wherever its derivative is positive and decreasing wher-
ever its derivative is negative. It follows, therefore, that at an op-
timum, the derivative must be zero (i.e., the top of a hill is flat).
Hence, if x∗ is the profit-maximizing quantity, then

d

dx
π(x)|x=x∗ = 0 ;

that is, π′(x∗) = 0. Substituting R(x)− C(x) for π(x), this implies

R′(x∗)− C′(x∗) = MR(x∗)− MC(x∗) = 0 .

From which we again see that a necessary condition for x∗ to be the
profit-maximizing quantity is that MR(x∗) = MC(x∗).

Sufficiency and the Shutdown
Rule 3.4

Propositions 8 and 10 are only necessary conditions; that is, they identify possi-
ble candidates for being the profit-maximizing quantity, but they do not guar-
antee that a given n or x that satisfies those conditions is the profit-maximizing
quantity. This is similar to the fact that while a high GMAT score is necessary
for being admitted to a top MBA, knowing someone has such a high score is
not sufficient to know—does not guarantee—she has been admitted to a top
MBA program. Fortunately, there is a condition that insures that, if the firm
should be in business at all, the conditions stated in Propositions 8 and 10 are
also sufficient (i.e., identify the profit-maximizing quantity).

We will establish the sufficiency condition for the continuous case first. Let
x∗ be the candidate for the profit-maximizing quantity identified by expression
(3.6). If MR(x) > MC(x) for all x < x∗ and MR(x) < MC(x) for all x > x∗, then
x∗ must be the profit-maximizing quantity (assuming the firm should operate
at all). To see why, observe that marginal profit, MR(x)MC(x) is positive for
all x < x∗; that is, every additional unit in this region contributes positively to
total profit. On the other hand, marginal profit is negative for all x > x∗; that
is, every additional unit in this region reduces total profit. Graphically, we’re
climbing up the total profit “hill” in the region x < x∗ and we’re descending
the total profit “hill” in the region x > x∗. See Figure 3.1.

We’ve established:

Proposition 11. If

(i) MR(x∗) = MC(x∗),

(ii) MR(x) > MC(x) for all x < x∗, and

(iii) MR(x) < MC(x) for all x > x∗,
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Dollars

Units (x)

π(x)

x∗

Figure 3.1: Profits are increasing with x if x < x∗. Profits are decreasing with
x if x > x∗.

then x∗ is the profit-maximizing quantity for the firm to produce (if it should be in
business at all).

Another way to view Proposition 11 is that x∗ is the profit-maximizing
quantity if the marginal revenue schedule, MR(·), crosses the marginal cost
schedule, MC(·), from above at x∗. See Figure 3.2 (note the two vertical scales—
profits are in dollars, while marginal revenue and marginal cost are in dol-
lars/unit). An equivalent way to state Proposition 11 is, thus,

Proposition 12. If marginal revenue crosses marginal cost once at x∗ and does so from
above, then x∗ is the profit-maximizing quantity (if the firm should be in business at
all).

Now consider the discrete case. Observe that we could plot marginal rev-
enue and marginal cost against output, n. If we connected the dots, then we
would have, essentially, marginal revenue and marginal cost curves respec-
tively. By Proposition 12, if the marginal revenue curve crosses marginal cost
once from above at a given point, then that point approximates the profit-
maximizing quantity. Why approximate? Well, remember, this is the discrete
case and the curves might cross at a non-integer point. But, then, the profit-
maximizing quantity would be the highest integer to the left of the cross; that
is, an n∗ such that MR(n∗)MC(n∗) and MR(n∗ + 1) < MC(n∗ + 1).

We can translate this analysis into a statement like Proposition 11. However,
before we do so, we might question the likelihood that the marginal revenue
schedule would cross the marginal cost schedule only once and from above
in the discrete case. Remember, in the discrete case, MC(1) can be quite large
because all the overhead costs are triggered by starting production (going from
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Dollars
(profit)

$/unit (MR
and MC)

Units (x)

π(x)

x∗

MR(x)

MC(x)

Figure 3.2: Marginal revenue (blue line) crosses marginal cost (red line) from
above at the profit-maximizing quantity, x∗.

0 to 1 unit). Hence, MC(1) ≫ MR(1). Fortunately, we can typically ignore that
first unit for reasons that we will take up in a moment. We have, therefore,

Proposition 13. Consider the discrete case. If

(i) MR(n∗) ≥ MC(n∗),

(ii) MR(n) > MC(n) for all n, 2 ≤ n < n∗, and

(iii) MR(n) < MC(n) for all n > x∗,

then n∗ is the profit-maximizing quantity for the firm to produce (if it should be in
business at all).

The caveat “if it should be in business at all” has been used a number of
times in this section. What do we mean by it? There is a final test that n∗ (dis-
crete case) or x∗ (continuous case) must satisfy before we can conclude they’re
the amounts the firm should produce. That test is would the firm lose money at
that level of output? If the answer is no, then they’re the amounts that should be
produced. If the answer is yes, then the firm should shutdown.

To go into detail, recall that C(0) = 0—if you’re not producing, then, by
definition, you’re not forgoing the best alternative, so the cost must be zero.
Not surprisingly, if you don’t produce, you don’t earn any revenue. That is,
R(0) = 0. Hence, if the firm shuts down (produces nothing), then its profit is
zero (i.e.,π(0) = R(0)C(0) = 0). We know that if the firm produces, the best it
can do is produce n∗ or x∗. So the alternatives are, in the discrete case, produce
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n∗ or 0. The former is worse than the latter only if π(n∗) < π(0) = 0. Likewise,
for the continuous case, the alternatives are produce x∗ or 0. Again, the former
is worse only if π(x∗) < π(0) = 0.

We can summarize this as

Proposition 14 (Shutdown rule). If profit at the quantity determined by Proposi-
tions 11 or 13, as applicable, is non-negative, then the firm should produce that quan-
tity. Otherwise, it should shutdown.

Another way to describe this is in terms of average revenue and average
costs. Let q∗ be x∗ or n∗ as appropriate. The shutdown rule states that the firm
should operate if and only if

R(q∗)− C(q∗) ≥ 0 .

Dividing through by q∗ and rearranging, this yields

AR(q∗) ≥ AC(q∗) , (3.7)

where AR(q) = R(q)/q is average revenue . In other words, the firm should
operate if and only if AR(q∗) ≥ AC(q∗).

Example 12: A firm has revenue, R(x), given by

R(x) = 10x − 1

1000
x2 .

Its costs, C(x), are given by

C(x) =

{
0 , if x = 0
2x + F , if x > 0

,

where F is a non-negative constant. From Proposition 9,

MR(x) = 10 − 2
1

1000
x = 10 − 1

500
x .

From Proposition 3, MC(x) = 2 for x > 0. Setting MR(x) = MC(x), we
have

10 − 1

500
x∗ = 2 ,

which, solving for x∗, implies x∗ = 4000. Observe that MR(x) > MC(x)
for all x < x∗ and MR(x) < MC(x) for all x > x∗. So, therefore, if the firm
should produce at all, it should produce 4000 units. Should it produce?
Observe

AR(x) = 10 − 1

1000
x and AC(x) = 2 +

F

x
.

We have AR(x∗) ≥ AC(x∗) if

10 − 1

1000
4000 ≥ 2 +

F

4000
;
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that is, if

6 ≥ 2 +
F

4000
,

or if 16, 000 ≥ F. So, provided the overhead cost, F, does not exceed
$16,000, the firm maximizes its profit by producing 4000 units. If F does
exceed $16,000, then the firm should shutdown.

Demand 3.5
Where does the revenue function come from? The answer is it depends on
how the firm prices and what its consumers demands are for its product. In
this section, we explore consumer demand and related issues.

Individual demand

Consider an individual and a good (which may be a physical product or a
service). If the consumer receives q units of this good, she enjoys some benefit,
b(q), from these q units. We can think of this benefit as being the monetary
equivalent of the happiness she enjoys from the q units. That is, she would be
indifferent between having the q units or having b(q) dollars in cash.

This benefit function, b(·), derives from the preferences, likes and dislikes,
of the individual in question. It can also depend, as we will see later, on her
income and the prices of other goods that she buys.

We can also define a marginal benefit schedule, mb(·), for this individual.
In the discrete case, we have

mb(n) = b(n)− b(n − 1) ;

that is, as always with marginals, the marginal benefit is the increment in her
total benefit from adding the nth unit.

In the continuous case, we have

mb(x) = lim
h→0

b(x + h)− b(x)

h
.

Note the similarity of this definition to the definition of marginal cost and
marginal revenue in the continuous case.

Regardless of the case, a property of marginal benefit schedules is the fol-
lowing.

Observation. Individuals’ marginal benefits schedules are decreasing functions. That
is, if q1 > q0, then mb(q1) < mb(q0).

Why is this? Well, it follows from two factors. First, the increase in most

Slope of marginal
benefit: Marginal
benefit is a
decreasing function.

people’s enjoyment or happiness from more of the same thing is diminishing in
the amount they receive. For example, the additional enjoyment gained from
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a second candy bar is typically smaller than the enjoyment the first candy bar
provided. Or, for those of you on the Atkins diet, the additional enjoyment
gained from the second steak is typically smaller than the enjoyment the first
steak provided. This property is known as diminishing marginal benefit (or,
sometimes, diminishing marginal utility).

The second factor is simple “crowding out.” If you eat one thing, you might
not have room for something else. If you spend time in one activity, you might
not have time for another activity. Hence, consumption of one thing often
means forgoing consumption of something else. So, even if the marginal gross
benefit of consumption isn’t decreasing (i.e., the effect on neural responses and
neuro-transmitter production is constant), the overall marginal benefit would
be decreasing because we are forgoing increasingly valued alternatives. That
is, the opportunity cost is rising. For example, you might schedule your first
hour of video game playing when there is nothing to watch on TV. If you play
a second hour, however, it could mean forgoing shows you somewhat like. A
third hour, could mean missing some of your favorite shows, etc.

Although we could do the analysis both for the discrete and the continuous
case, it is far easier to do it for the continuous case. Hence, we will consider
that case only. As, however, should become clear, marginal benefit is a lot like
marginal revenue; so the analysis of marginal revenue and profit maximization
in the discrete case carries over to marginal benefit and surplus maximization
in the discrete case.

Goods are not typically given to us for free—usually, we have to pay for
them. Because the money we spend on them could be spent on other things
we like, we are always forgoing other things when we buy things. Opportu-
nity cost! Hence, to determine how well off we are from buying q units of a
goodhow much we profit—we need to subtract the expenditure on the q units
from our benefit, b(q). Under simple pricing, the expenditure is pq, where p
is the price per unit of the good. The individuals profit—called her consumer
surplus—is

cs(x) = b(x)− expenditure on x

= b(x)− px (under simple pricing) (3.8)

Using Proposition 3, the consumers “marginal cost” is just p, the price. Note
her marginal cost is a constant. If we assume mb(0) ≥ p, then the mb(·) sched-
ule will cross her “marginal cost” schedule (i.e., the horizontal line at height
p) once from above. We can then invoke Proposition 12 to conclude that the
consumer maximizes her “profit”—that is, her consumer surplus—by equat-
ing marginal benefit with price. In other words, she maximizes her consumer
surplus by purchasing the amount x∗ that solves

mb(x∗) = p . (3.9)

Figure 3.3 illustrates
If mb(0) < p, then the consumer does best not to purchase any units. As

is true of all marginal and total schedules, total benefit, b(x), is the area be-
neath the mb(·) schedule from 0 to x units. Because of diminishing marginal
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$/unit

units (x)

mb(x)

p

x∗

mb(0)

Figure 3.3: The marginal benefit schedule, mb(·), crosses the price line, p,
once from above.

benefit, that area must be less than the rectangle whose area is x × mb(0) (see
Figure 3.3). Hence, b(x) < xmb(0). But if mb(0) < p, then b(x) < px for all x
and the consumer does better not to buy any amount.

Because mb(·) is decreasing, it is invertible (see Section A1.1). Hence, ex-
pression (3.9) can be read as defining x∗ as a function of p. That is, if we vary
p, we can see how the consumer’s choice of optimal x varies using expression
(3.9). Figure 3.4 illustrates. Note that we get a different x∗t for each pt ≤ mb(0).
All pt > mb(0) map to the same x∗, namely 0.

We can use the relation identified by Figure 3.4 to define a demand curve
(alternatively, demand function or demand schedule) for the individual in ques-
tion. Specifically, for p > mb(0), we see that the quantity demanded (i.e., that

(Individual)
demand curve:
The relation
between price and
the amount an
individual wishes to
purchase.

the consumer wishes to purchase) is 0. For p ≤ mb(0), we see that the quan-
tity demanded (i.e., that the consumer wishes to purchase) is the inverse of

marginal benefit; that is, the amount demanded at p is mb−1(p). If we let d(·)
denote the demand function (i.e., the amount the consumer in question wishes
to purchase at a given price), then we have

d(p) =

{
0 , if p > mb(0)

mb−1(p) , if p ≤ mb(0)
. (3.10)

Figure 3.5 illustrates.
Observe, from Figure 3.5, that we determine the amount demanded at a

price, say p0, by reading across from that price until we hit the demand curve,
then down from where we hit the demand curve. Hence, as illustrated, d(p0)—
a point on the horizontal axis—is the amount demanded at price p0—a point
on the vertical axis.

Observe, too, that because a demand curve is derived from the marginal
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$/unit

units (x)

mb(x)

p3

p4

x∗3 x∗4

mb(0)

p2

p1

Figure 3.4: By varying the price, the marginal benefit curve can be used to
determine the quantity the consumer wants (demands). Note that
at high prices (e.g., p1 and p2), demand is zero (i.e., x∗1 = x∗2 = 0).

$/unit

units (x)

mb(x)

◮

◮

d(p0)

p0

mb(0)

d(p)

Figure 3.5: The demand curve, shown as a violet curve, corresponds to
marginal benefit (thicker curve) for p ≤ mb(0) and corresponds
to the vertical axis (thinner line) for p > mb(0).
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benefit schedule, which is decreasing, the amount demanded is less the greater
is the price. That is, if p and p′ are two prices, p′ > p, then

d(p′) < d(p) if d(p) > 0 ; otherwise

d(p′) = d(p) if d(p) = 0 .

Consistent with Figure 3.5, we describe this by saying that demand curves
slope down.2

Note: Demand
curves slope down.

Example 13: Suppose that an individual’s benefit schedule for a particular
good is 10x − x2; that is, b(x) = 10x − x2. Using Proposition 9, we see that

mb(x) = 10 − 2x .

Observe mb(0) = 10. Let’s derive this individual’s demand curve. For
p > 10, he purchases nothing; that is, d(p) = 0 for all p > 10. For p ≤ 10,
we need to invert the marginal benefit schedule. Observe that if

p = mb(x) = 10 − 2x ,

then

mb−1(p) =
10 − p

2
= 5 − p

2
.

We can conclude that

d(p) =

{
5 − p/2 , if p ≤ 10
0 , if p > 10

.

Properties of demand: Complements and substitutes

Our derivation of the individuals demand curve has held constant a number
of factors. In particular, it has assumed that the prices of other goods has re-
mained fixed. But what happens to demand for one good if the price of another
good changes? The answer depends on whether the two goods are comple-
ments or substitutes.3

Two goods are complements if they are goods that tend to be consumed
Examples of such pairs would be chips and salsa, PCs and operating systems,

Complements:
Goods consumed
together.and whips and chains. Some pairs of goods are complements for some peo-

ple (e.g., orange juice and vodka), but not for other people (e.g., vodka tonic
drinkers).

Two goods are substitutes if they are goods that tend to be seen as alter-
natives. Examples would include DVDs and in-theater movies, beer and wine,

Substitutes:
Goods that are
alternatives.and email and telephone calls.

2If you’ve taken economics before and heard of Giffen goods, forget about them—they are a
theoretical possibility that have never been shown to exist in reality. If you dont know what a
Giffen good is, consider yourself lucky.

3Point about spelling: Note that “complement” has no “i.” Compliment with an “i” is a different
word (as a verb it means to praise or give for free; as a noun it means a statement of praise).
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p0

d(p0|pc)d(p0|p′c)

$/ounce

ounces of salsa

d(p|pc)

d(p|p′c)

Figure 3.6: As the price of chips, the complementary good, increases from pc

to p′c, the demand curve for salsa shifts in (goes from being the
violet curve, d(·|pc), to being the magenta curve, d(·|p′c).

If two goods, say chips and salsa, are complements and the price of one,
say chips, goes up, then the demand for the other at a given price will tend to
be less. That is, if pc and p′c are two prices for chips, pc < p′c, then

d(ps|p′c) ≤ d(ps|pc) ,

where d(ps| p̂c) means the amount of salsa demanded as a function of the price
of salsa, ps, given that the price of chips is p̂c. As illustrated in Figure 3.6, we
can describe this as saying that an increase in the price of the complementary
good causes the demand curve for the other good to shift in (equivalently, shift
to the left). The reason for this is that the benefit of consuming salsa depends on
the number of chips one consumes. If, because the price of chips has increased,
one will consume fewer chips, then one has less demand for salsa. Another
way to put this is that the marginal benefit of an ounce more salsa is less the
fewer chips on which it can go.

If two goods, say beer and wine, are substitutes and the price of one, say
beer, goes up, then the demand for the other at a given price will tend to be
greater. That is, if pb and p′b are two prices for beer, pb < p′b, then

d(pw|p′b) ≥ d(pw|pb) ,

where d(pw| p̂b) means the amount of wine demanded as a function of the price
of wine, pw, given that the price of beer is p̂b. Thinking of Figure 3.6 “in re-
verse,” we can describe this as saying that an increase in the price of the substi-
tute good causes the demand curve for the other good to shift out (equivalently,
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shift to the right). The reason for this is that the benefit of consuming wine de-
pends on the amount of other alcohol one can consume. If one is buying less
beer because the price of beer has gone up, then the demand for other alcohol
(e.g., wine) will go up.

Example 14 [Fish and Bushmeat: Economics meets Ecology]: Because of
various European Union (EU) policies,4 there was more fishing by Euro-
pean fleets off the west African coast. This led to worse harvests for West
African fishermen, including Ghanaian fishermen. Hence, the price of fish
in Ghanaian markets went up. Bushmeat (hunting wild animals) is a sub-
stitute for fish (i.e., is an alternative source of protein). Hence, the outcome
of the EU’s policy was a greater slaughter of African wildlife.

Properties of demand: Other shifters

Changes in the prices of complements and substitutes are not the only factors
that can shift demand. For example, when a hurricane is coming, the benefit of
having bottled water, plywood, and canned foods increases. Because benefit is
the area under the marginal benefit schedule (recall Proposition 6 on page 43),
a shift up in benefit must correspond to a shift up in marginal benefit. But,
from Figure 3.6, it is clear that a shift up in marginal benefit is equivalent to
a shift out in demand. That is why, for instance, we see more bottled water,
plywood, and canned foods being demanded when a hurricane is coming.

Other changes, such as changes in technology, can also shift demand curves.
The advent of the car, for instance, greatly lessened the benefit of buggy whips,
which meant marginal benefit fell, which was equivalent to the demand for
buggy whips shifting in. Likewise, the advent of USB-port jump (flash) drives
has caused the demand for diskettes (floppies) to shift in (indeed, disappear).

Some technologically driven demand shifts, such as that caused by jump
drives, can also be seen as examples of substitutes at work. If a product doesn’t
exist, thats equivalent to its price being infinity. The introduction of jump
drives can be seen as a (dramatic) fall in the price of jump drives. Jump drives
and diskettes are substitutes. Hence, not surprisingly, the advent of jump
drives caused demand for diskettes to shift in.

Properties of demand: Income effects

Suppose your income doubled. One response might be that you eat more meals
out than you did before. Of course, if you eat more meals out, then you are
eating fewer meals at home, which means you’re buying fewer items to cook
at home (e.g., frozen dinners). In terms of your demand curves, a doubling of
your income causes your demand curve for restaurant meals to shift out and
your demand curve for frozen dinners to shift in.

4This example is taken from a study by a Berkeley faculty member, Justin Brashares: Brashares,
J.S., P. Arcese, M.K. Sam, P.B. Coppolillo, A.R.E. Sinclair, and A. Balmford. “Bushmeat Hunting,
Wildlife Declines and Fish Supply in West Africa,” Science Vol. 306 (2004), pp. 1180–1183.
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A good for which the demand curve shifts out as income rises is called a
normal good . A good for which the demand curve shifts in as income rises
is called an inferior good . Inferior goods are those goods that are seen as less
desirable than certain substitutes for them (e.g., a meal at Rivoli is better than
a Swanson frozen dinner). The problem is that, at a given level of income, one
can afford only so many restaurant dinners. At a higher level of income, one
can afford more, which crowds out the frozen dinners.5

This discussion of income effects highlights an omission in our discussion
of demand to this point. What about the ability of an individual to afford
things? That is, for example, if an individual’s marginal benefit schedule in-
tersects the price line at 100 units and a price of $10, but she only has $900 to
spend, then it wouldn’t make sense to say her demand is 100—she can’t afford
that many. The goods news is that there is a way to accommodate the issue of
affordability into the analysis. The bad news is that it is rather complicated (see
the following subsection). Fortunately, for most goods the affordability issue is
generally not that important. The number of candy bars, for instance, that you
buy varies little or not at all with your income. Another way to say this is that,
for most goods, income effects are negligible. In this text, we will, therefore,
ignore income effects.

∫
dx Utility Maximization

OPT We think of consumers as deriving utility—that is to say happiness—�
from the consumption of different goods. A general way to write
utility for a potential customer is to index all the different products,
such as Cinnamon Apple Cheerios, sports cars, broccoli, Warriors
tickets, etc., by i and write utility as

U(q1, q2, . . . , qi, . . . qN) ,

where N is the total number of different goods. Consumers also
have budget constraints. That is, a consumer’s total expenditure
cannot exceed his income, I. We write this as

p1q1 + · · ·+ pNqN ≤ I ,

where pi is the price of a unit of the ith good. Note the lefthand side

could be written as ∑
N
i=1 piqi.

The consumer wishes to maximize his wellbeing—his utility— sub-
ject to his budget constraint. This can be done by Lagrange maxi-
mization: Define λ to be the Lagrange multiplier or shadow value
of income. That is, λ is the value of the marginal dollar in terms of

5Alternatively, one might stay home, but have more steaks and fewer frozen dinners as income
rises
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utility (i.e., the increase in utility if income were increased by a dol-
lar). Then this constrained maximization program can be written
as

max
{q1,...,qN}

U(q1, . . . , qN) + λ

(

I −
N

∑
i=1

piqi

)

.

Although we could solve this expression (the Lagrangean) directly,
it is easier to use some intuition. If someone is going to pay a dollar
to consume more of one good, it cannot be the case that spending
that dollar on another good will yield more utility. The amount
an additional dollar buys of good i is 1/pi. If MUi is the marginal
utility from the ith good (i.e., MUi = ∂U/∂qi), then MUi × 1/pi

(marginal utility times quantity) is the amount of additional utility
derived from a dollar spent on the ith good. If the consumer has
maximized his utility, it cannot be that moving the marginal dollar
from one good to another can increase his utility. That is, we have
for any two goods i and j,

MUi ×
1

pi
≯ MUj ×

1

pj
and

MU j ×
1

pj
≯ MUi ×

1

pi
.

But this just says that for any pair of good it must be that

MUi

pi
=

MU j

pj
(3.11)

if the individual is maximizing his utility subject to his budget con-
straint.6 Equation (3.11) says that the benefit of consuming one
good divided by the cost (sometimes called the “bang for the buck”)
must be equal to the same ratio (bang for the buck) for any other
good.

Your bang for the buck is the value, in terms of utility, of the marginal
dollar of income. That is, it is the shadow value of income. We’ve
thus derived:

MUi

pi
= λ ,

or, rewriting,
MUi = λpi . (3.12)

Observe that we have a function of quantity only on the lefthand
side and a function of price on the righthand side. If, as we are

6To be precise, this holds only for goods for which the consumer actually purchases positive
amounts.
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maintaining, the consumer gets a diminishing marginal utility (or
benefit) from each good, then MUi is an invertible function of qi. If
we invert it, we get

qi = MU−1
i (λpi) . (3.13)

This relates the amount the consumer wants to the price of the
good. So, holding everything else constant, this is a demand curve.

To square this analysis with our earlier derivation of individual de-
mand from marginal benefit schedules, we need to assume that the
utility function has the form

U(q1, . . . , qN) = u(q1, . . . , qN−1) + qN .

There is no further loss of generality in normalizing the units of
the Nth good so that the price per unit is $1; that is, so pN = 1.7

Clearly, MUN = 1, hence, from expression (3.12) for i = N, we
have 1 = λ × 1; that is, the shadow value of income, λ, is 1. Ob-
serve, therefore, that λ does not depend on income, I. Holding
constant the amount of the goods other than i in expression (3.12),
we have an expression that relates marginal benefit to price; that is,
condition (3.9). Inverting— employing expression (3.13)—gives us

qi = MU−1
i (pi) = di(pi)

(recall λ = 1). Observe this means that there are no income effects,
therefore, in the demand for good i.

From individual to aggregate demand

For simple pricing, what a firm cares about is not each individual’s demand
but aggregate demand , the amount that all individuals want at a given price.
Aggregating all the individual demand curves gives the aggregate demand
curve .

Aggregating demand is straightforward. If Rose and Noah are the only two
consumers and Rose wants 3 units at a given price and Noah wants 5 units
at a given price, then aggregate demand at that price is 8. Similarly, if Rose’s
demand curve is dR(p) and Noah’s is dN(p), then the aggregate demand curve,
D(p), is given by

D(p) = dR(p) + dN(p) .

In general, if we have N consumers, indexed by n, then the aggregate demand
curve is given by

D(p) = d1(p) + · · ·+ dN(p) =
N

∑
n=1

dn(p) . (3.14)

7The Nth good is the numéraire good.
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Example 15: Suppose that there are two types of consumers. There are
1000 people of type A, and each of these people have a demand for your
product given by

dA(p) =

{
150 − 3p , if p ≤ 50
0 , if p > 50

.

There are an additional 2000 people of type B, each of whom has a demand
for your product given by

dB(p) =

{
1000 − 2p , if p ≤ 500
0 , if p > 500

.

The aggregate demand of type-A consumers is

DA(p) =
1

∑
n=1

000dA(p) = 1000dA(p) =

{
150, 000 − 3000p , if p ≤ 50
0 , if p > 50

.

The aggregate demand of type-B consumers is

DB(p) =
2

∑
n=1

000dB(p) = 2000dB(p) =

{
2, 000, 000 − 4000p , if p ≤ 500
0 , if p > 500

.

So overall aggregate demand is

D(p) = DA(p) + DB(p)







150, 000 − 3000p + 2, 000, 000 − 4000p = 2, 150, 000 − 7000p , if p ≤ 50
0 + 2, 000, 000 − 4000p = 2, 000, 000 − 4000p , if 50 < p ≤ 500
0 + 0 = 0 , if 500 < p

.

Demand Elasticity 3.6
For reasons that will become clear later, it is useful to define a quantity known
as the elasticity of demand . The elasticity of demand, ǫD, is defined to be

ǫD = −1 × slope of demand at p × p

D(p)
. (3.15)

Because demand curves slope down, we multiply by −1 to make ǫD > 0.
What ǫD is telling us is the percentage change in quantity demanded per

percentage change in price. That is, it can be shown that,

ǫD − 1 ×
(

∆D(p)

D(p)
× 100%

)

÷
(

∆p

p
× 100%

)

,

where ∆ denotes “change in.”8

8 ∫
dx Recall that the slope of D(·) is denoted as dD(p)/dp. Hence, equation (3.15) can be

rewritten as −dD(p)/dp × p/D(p). Rearranging, we get the calculus analog of (3.6): ǫD =
−dD(p)/dp÷ dp/p.
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Revenue and Marginal
Revenue under Simple Pricing 3.7

We can now go from demand to a revenue function for a firm that engages in
simple pricing.

Derivation of revenue

Consider a firm that faces aggregate demand D(p). What this says is that if it
charges a price of p, then it will sell D(p) units. Its revenue is price times units
sold, or pD(p). Observe that, if it were to raise its price, two things would
happen. It would earn more per unit (that’s the good news). But it would sell
fewer units—demand curves, recall, slope down (that’s the bad news).

Our analysis of profit maximization was done in terms of quantity, whereas
we have just derived an expression for revenue in terms of p. To utilize our
earlier analysis, we need to convert pD(p) into an expression that is expressed
in terms of quantity. Observe that D(p) is a quantity, call it q. Because demand
curves slope down, D(·) is invertible. We can, thus, find a unique value of p
that solves the equation

q = D(p) .

Let P(q) be the value of p that solves that equation. Because P(·) is the inverse
of the demand function, we call it the inverse demand function (alternatively,
inverse demand curve or inverse demand schedule). So, substituting P(q) for
p and q for D(p), we can rewrite revenue in terms of quantity:

R(q) = P(q)q .

Derivation of marginal revenue

To find the profit-maximizing quantity, we want to use the MR = MC rule. But
this requires us to know MR.

If the firm wishes to increase q, it will have to lower price. Put another way,
because demand curves slope down, P(·) is a decreasing function—if q goes
up, it goes down. We therefore face the same “good-news-bad-news” situation
noted above. The good news from increasing q is that we sell more units. The
bad news is that we can only do so at a lower price on all units sold. This
second effect is sometimes referred to as the driving-down-the-price effect .

Consider a very small positive increment in the quantity to be sold, dq. As
just discussed, this will result in a small change in price, dp. Because demand
curves slope down, dp < 0. Figure 3.7 illustrates. The small change in revenue,
dR, is captured by the two shaded areas. Because the firm is selling dq more
units, it adds dq ×

(
P(q) + dp

)
to its revenue. This is the gray area labelled

A. That’s the good news. The bad news is the driving-down-the-price effect.
Price is changed by dp. So, on all the q units it would have sold had it not tried
to increase sales, it gets −dp less (recall dp < 0). So it loses revenue equal to
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price ($/unit)

quantity (q)

B

A

P(q)

q q + dq

P(q)

P(q) + dp

Figure 3.7: Increasing units sold by dq changes price by dp < 0. The firm
gains, in revenue, the gray area, labeled A, but loses the orange
area, labeled B. The latter area represents the driving-down-the-
price effect.

the orange area labelled , which is dp × q. Hence, the change in revenue, dR, is
given by

dR = dq ×
(

P(q) + dp
)
− (−dp × q) = dq ×

(
P(q) + dp

)
.

Dividing the end terms by dq, we get

dR

dq
= P(q) + dp +

dp

dq
q .

Now a small change in revenue per unit change in quantity is just marginal
revenue; that is, dR/dq = MR(q). Similarly, a small change in the price per
unit change in quantity is just the slope of the inverse demand curve. We thus
have

MR(q) = P(q) + dp + q × slope of inverse demand at q

= P(q) + dp + qP′(q) .

Note the use of the notation P′(q) to denote the slope of the inverse demand
schedule at q. The quantity dp is very small, essentially zero, so it can be ig-
nored. In fact, in the limit, as we consider an infinitesimally small change in
quantity, it is zero. We’ve thus arrived at the formula for marginal revenue

MR under simple
pricing:
P(q) + qP′(q).
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under simple pricing:9

Proposition 15. MR(q) = P(q) + qP′(q) .

The qP′(q) term, which is negative—demand curves slope down—represents
the driving-down-the-price effect.

Example 16: Suppose a firm faces demand given by

D(p) = 500, 000 − 2500p .

To calculate marginal revenue, (i) we need to calculate inverse demand,
then (ii) we need to employ Proposition 15.

Inverting demand, we have:

q = 500, 000 − 2500 × P(q) ; hence, P(q) = 200 − q

2500
.

Observe the second expression is a line in slope-intercept form (see Sec-
tion A1.5) and the slope, P′(q), is −1/2500 (it is negative of course because
demand curves slope down). Using Proposition 15 yields:

MR(q) =
(

200 − q

500

)

︸ ︷︷ ︸

P(q)

+

(

−q
1

2500

)

︸ ︷︷ ︸

qP′(q)

= 200 − 2q

2500
= 200 − q

1250
.

Observe the following, all of which are general results,

• If the inverse demand schedule is linear, then the marginal revenue
schedule is also linear.

• The inverse demand schedule and the marginal revenue schedule
share the same intercept (in this example, 200).

• If the inverse demand schedule is linear, then the slope of the marginal
revenue schedule is twice the slope of the inverse demand schedule
(−1/1250 versus −1/2500, respectively, in this example).

Marginal revenue and elasticity

The fact that marginal revenue under simple pricing has both a good-news
term and a bad-news term raises the question of whether the bad-news term
could dominate the good-news term. That is, could marginal revenue ever be
negative? The answer is yes. Moreover, as we will show, the sign of marginal
revenue is related to elasticity of demand, ǫD.

9 ∫
dx A quick derivation via calculus: R(q) = qP(q). Differentiating, we have MR(q) =

P(q) + qP′(q); where the derivative of the righthand side follows by the product rule (see Propo-
sition 32 on page 152).
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Because price is positive, MR(q)/P(q) has the same sign as MR(q). Ob-
serve, from Proposition 15, that

MR(q)

P(q)
= 1 + P′(q)

q

P(q)
. (3.16)

Recall that P′(q) is the slope of inverse demand, q = D(p), and P(q) = p.
Hence, we can rewrite expression (3.16) as

MR(q)

p
= 1 + slope of inverse demand at q × D(p)

p

= 1 +
1

(

slope of inverse demand at p × p
D(p)

) .

The denominator in the last expression is −1 times the elasticity of demand
(see expression (3.15) above). So we have

MR(q)

p
= 1 − 1

ǫD
. (3.17)

Observe this last expression implies

Proposition 16. If elasticity is greater than 1 (ǫD > 1), then marginal revenue is
positive; if it equals 1 (ǫD = 1), then marginal revenue is zero; and if it is less than 1
(ǫD < 1), then marginal revenue is negative.

When ǫD > 1, we say that we are on the elastic portion of demand. When
ǫD = 1, we say that we are on the unitary elastic of demand. When ǫD < 1, we
say that we are on the inelastic portion of demand.

When ǫD > 1, a one-percentage-point change in price causes a more than
one percent change in quantity, which is why demand is called elastic in this
case. Because revenue is price times quantity, this tells us that, on the elastic
portion of demand, revenue goes up if we lower price (increase quantity); and
revenue goes down if we raise price (decrease quantity). When ǫD < 1, a
one-percentage-point change in price causes less than a one-percent change in
quantity, which is why demand is called inelastic in this case. Moreover, this
means that, on the inelastic portion of demand, revenue goes down if we lower
price (increase quantity); and it goes up if we raise price (decrease quantity).

Observe that a firm engaged in simple pricing would never want to operate
on the inelastic portion of demand. If it were on the inelastic portion, then it
could raise price (equivalently, cutback output), which would raise revenue.
Moreover, because it is producing less, it would also be reducing cost. Any
move that both raises revenue and cuts cost is a winning move—so, at any
point on the inelastic portion of demand, it would want to raise price, which
means it would never operate on the inelastic portion.

Proposition 17. A firm engaged in simple pricing does not choose its price or output
so as to be on the inelastic portion of its demand curve.
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price ($/unit)

quantity (q)

P(q)

q∗

P(0)

P(q∗) MC(q)

MR(q)

Figure 3.8: The profit-maximizing quantity, q∗, is determined by the intersec-
tion of the marginal-revenue schedule (in blue) and the marginal-
cost schedule (in red). Note that MR crosses MC once and from
above. The profit-maximizing price, P(q∗), is then read off the in-
verse demand curve (in black) at the profit-maximizing quantity, q.

The Profit-Maximizing Price 3.8
We now have all the ingredients in place to determine the profit-maximizing
price.

Under fairly general conditions, the marginal-revenue schedule under sim-
ple pricing is downward sloping. From Example 16, it will certainly be down-
ward sloping if demand is linear.

Typically, we can expect the marginal-cost schedule to be either relatively
flat or increasing. Either way, if the marginal-revenue schedule is decreas-
ing, this means that, if the schedules cross at all, the marginal-revenue sched-
ule crosses the marginal-cost schedule once and from above. Observe that, if
P(0) > MC(0), the curves will cross given their predicted slopes.10

Assuming, therefore, that the MR = MC rule is sufficient, as well as nec-
essary, for determining the profit-maximizing quantity, we need to translate
that into a price. This is straightforward. If q∗ solves the expression MR(q∗) =
MC(q∗), then the profit-maximizing price is P(q∗). Figure 3.8 illustrates.

10 ∫
dx If, because of an overhead cost, MC(0) is not defined, then this condition can be restated

as P(0) > limh↓0 MC(h).
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The firm’s profit is revenue minus cost. So the maximum profit is

π(q∗) = q∗P(q∗)− C(q∗) .

We do need, of course, to check the shutdown rule; that is, make sure the
firm should operate at all. Recall that, under simple pricing, average revenue
is price. Hence, the condition for operating at all, expression (3.7), becomes

P(q∗) ≥ AC(q∗) .

Example 17 [From start to finish]: Consider a firm that faces demand

D(p) = 1, 000, 000 − 50, 000p .

Suppose its costs are given by

C(q) =

{
0 , if q = 0
6q + 1, 400, 000 , if q > 0

.

For q > 0, it is readily seen that MC(q) = 6 (recall Proposition 3 on
page 39). To derive MR(·), we need, first, to calculate inverse demand.
Then, we need to calculate marginal revenue using Proposition 15. Letting
q = D(p) and p = P(q), we have

D(p) = 1, 000, 000 − 50, 000p ; hence,

q = 1, 000, 000 − 50, 000P(q) .

So, solving for P(q), we have

P(q) = 20 − q

50, 000
.

Observe the slope is −/50, 000. Hence, Proposition 15 tells us that

MR(q) =

(

20 − q

50, 000

)

+ q
−1

50, 000
= 20 − q

25, 000
.

Observe, as we knew had to be the case from Example 16, the MR schedule
has the same intercept as the inverse demand curve and has twice its slope.

Because (i) P(0) = 20 > 6 = MC, (ii) MC is flat, and (iii) MR(·)
downward sloping, we see that the MR schedule crosses the MC sched-
ule once, from above. That is, the only candidate for the profit-maximizing
quantity (unless the firm should shutdown) is the value of q that solves
MR(q) = MC(q). To find that q:

20 − q

25, 000
= 6 ;

hence, solving for q, we obtain q = (20 − 6)× 25, 000 = 350, 000. That is,
q∗ = 350, 000.

To get the profit-maximizing price, we insert that q∗ into P(·):

P(q∗) = 20 − 350, 000

50, 000
= 13 .
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So, if it is optimal for it to operate, the profit-maximizing price is $13.

Should the firm operate? To answer, we need to determine whether $13
is greater than AC(q∗). Observe

AC(q) = 6 +
1, 400, 000

q
.

Therefore,

AC(q∗) = 6 +
1, 400, 000

350, 000
= 6 + 4 = 10 .

Because $13 > $10, the firm should produce.

Finally, its profit is revenue minus cost

π(350, 000) = 13 × 350, 000
︸ ︷︷ ︸

revenue

− (6 × 350, 000 + 1, 400, 000)
︸ ︷︷ ︸

cost

= 1, 050, 000 .

The firm’s profit, if it prices correctly, is $1,050,000.

The Lerner Markup Rule 3.9
We can relate the price markup over marginal cost to the elasticity of demand.
The markup is p∗MC(q∗), where we have used p∗ to denote the profit-maximizing
price (i.e., p∗ = P(q∗)). What we want to do is determine what proportion of
price is markup; that is, we want to calculate

p∗ − MC(q∗)
p∗

.

Recall, earlier, that we established that

MR(q) = p ×
(

1 − 1

ǫD

)

(3.18)

(see expression (3.17) above). We also know that MR = MC at the profit-
maximizing quantity. Hence, we have

p∗ − MC(q∗)
p∗

=
p∗ − MR(q∗)

p∗
(MR = MC at profit-max’ing quantity)

=
p∗ − p∗ ×

(

1 − 1
ǫD

)

p∗
(expression (3.18))

=
1

ǫD
.

We have just established the Lerner markup rule:
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Proposition 18 (Lerner markup rule). Under simple pricing, at the profit-maximizing
price and quantity, the proportion of the price that is markup over marginal cost is
1/ǫD; that is,

p∗ − MC(q∗)
p∗

=
1

ǫD
.

The Lerner markup rule is useful for optimally adjusting price following
small changes in cost.

Example 18: Due to a rise in the price of one of its raw materials, a com-
pany finds its marginal cost of production has increased from $10 per unit
to $10.50 (a 5% increase). Data suggests that elasticity of demand at current
price is 1.25. Assuming the company’s old price was optimal, what should
its new price be (approximately)?11 Using the Lerner rule we have

p − 10.50

p
=

1

1.25
= .8 .

Solving for p, we have p = $52.50; that is, the new price should be $52.50.
(Can you determine what the old price was?)

Example 19: Suppose that your firm’s marginal cost increases by 2%. By
what percentage (approximately) should you raise your price, assuming
you were initially pricing optimally?

To determine this, let δ denote the proportion by which you should
increase your price; that is, δ× 100% is the percentage by which you should
increase your price. Let p and c denote your original price and marginal
cost, respectively. The Lerner rule tells you that

p − c

p
=

1

ǫD
.

Your new price, which is p + δp, must also satisfy the Lerner markup rule
when your marginal cost is c + .02c = 1.02c:

p + δp − 1.02c

p + δp
=

1

ǫD
.

If two things equal the same third thing, then the two things equal each
other:

p − c

p
=

p + δp − 1.02c

p + δp

=
(1 + δ)p − 1.02c

(1 + δ)p
.

11Why “approximately”? Because elasticity is typically not a constant. If we adjust the price,
we’re on a different part of the demand curve, so the elasticity will be different. For small move-
ments in price, however, the change in elasticity is very small, so treating it as constant for small
price changes yields a good approximation.
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Observe that 1 + δ = 1.02 solves this last expression (since, then, the com-
mon 1.02 can be canceled from numerator and denominator of the last ex-
pression). It follows, therefore, that δ = .02—you should raise your price
2%. This is general: For small increases in marginal cost, the approximate
best response is to increase price by the same percentage.

Finally, if elasticity were 1.5, then by increasing your price 2%, you
could expect an approximate reduction in units sold of 3%.

Summary 3.10
The focus of this section was on simple pricing; that is, charging the same
price for all units and to all consumers. Before we could determine the profit-
maximizing price, however, we needed to develop a suitable toolkit.

First, we had to work out how a firm maximizes profits. This involves a
number of steps:

1. Determine the marginal-revenue and marginal-cost schedules.

2. Solve for the quantity that equates marginal revenue and marginal cost.
This quantity is a candidate for being the profit-maximizing quantity. If
the marginal-revenue schedule crosses the marginal-cost schedule once
and from above, then this quantity is the profit-maximizing quantity if
the firm should produce at all.

3. Check whether the firm should shutdown. That is, check that overhead
costs are not so great as to make shutting down the preferable strategy.

Next, we investigated how individual preferences translated into demand.
By maximizing their consumer surplus, individuals’ determine how much they
demand at any given price. Aggregating individual demand curves yields the
firm’s aggregate demand curve.

Knowing demand, we could then derive marginal revenue under simple
pricing. Under simple pricing, marginal revenue has two components: a “good-
news” component that points toward increased revenue if more units are sold;
and a “bad-news” component—the driving-down-the-price effect—that arises
because the price received on all units must be lowered to sell more units.

Once marginal revenue is determined, we can employ the steps outlined
above to determine the profit-maximizing price.

Lastly, we considered the elasticity of demand and how it related to the
profit-maximizing price via the Lerner markup rule.



Advanced Pricing 4
In this chapter, we consider other forms of pricing. Although simple pricing
(sometimes called linear pricing or uniform pricing) is quite prevalent, it is
neither the only nor the most desirable form of pricing. On your trips to the
supermarket, you have no doubt noticed that the liter bottle of soda does not
cost twice as much as the half-liter bottle of soda. In your purchases of airplane
tickets, you have no doubt noticed that how much you pay is a function of what
restrictions you are willing to accept (e.g., staying over a Saturday night). Some
goods and services you buy may have entry fees (e.g., club membership) and
per-use charges (e.g., greens fees). All of these are examples of price discrimi-
nation or nonlinear pricing.

What Simple Pricing Loses 4.1
To motivate other forms of pricing, it helps to know what simple pricing’s de-
ficiencies are. Basically, there are two. First, simple pricing leaves “money on
the table,” in a sense to be made formal below. Second, it leaves potential profit
in the hands of consumers in the form of their consumer surplus.

What do we mean that simple pricing “leaves money on the table”? Con-
sider Figure 4.1. It reproduces Figure 3.8. Now suppose the firm in question
wishes to sell one more unit. Observe that if it could sell that additional unit,
the q∗ + 1st unit, without having to lower the price on the other q∗ units, then it
would profit by doing so. Some consumer is willing to pay the firm P(q∗ + 1)
for the q∗ + 1st unit and the incremental cost to the firm of producing that
q∗ + 1st unit is MC(q∗ + 1). As Figure 5.1 shows, MC(q∗ + 1) < P(q∗ + 1). In
other words, if the firm could charge P(q∗ + 1) for the q∗ + 1st unit, but still
charge P(q∗) for the other q∗ units, it would gain P(q∗ + 1) − MC(q∗ + 1) in
profit. The problem is that, under simple pricing, it cannot charge a price for
the q∗ + 1st unit that is different than the price it charges for the other q∗ units.
And the fact that it would, under simple pricing, have to lower the price on all
q∗ units to induce someone to buy the q∗ + 1st unit, makes selling that q∗ + 1st
unit undesirable.

In essence, then, the firm is leaving P(q∗ + 1) − MC(q∗ + 1) on the table;
that is, it is a potential sale that would be profitable except for the driving-
down- the-price effect of simple pricing. Observe, too, that we could repeat this
analysis for the q∗ + 2nd unit, the q∗ + 3rd unit, and so forth until we reach the
unit at which inverse demand falls below marginal cost (obviously, we would

79



80 Chapter 4: Advanced Pricing

MC(q∗ + 1)

price ($/unit)

quantity (q)

P(q)

q∗ q∗+1

P(0)

P(q∗)

P(q∗ + 1)

MC(q)

MR(q)

Figure 4.1: Were it not for the consequent driving-down-the-price effect, the
firm would find it profitable to sell the q∗+ 1st unit at price P(q∗+ 1).

never want to sell the qth unit if P(q) < MC(q)). Treating units as continuous,
we have thus shown that the firm forgoes the area labeled deadweight loss in
Figure 4.2. This region is called the deadweight loss because it corresponds to
the potentially profitable sales that don’t get made.

What these two figures show is that if a firm could devise a way to price that
avoided the driving-down-the-price effect, then it could potentially increase its
profits over those it can earn using simple pricing.

We also observed that simple pricing leaves profits, in the form of consumer
surplus, in the hands of consumers. The firm would also like to capture some
of this, as well. To understand this second “loss” from simple pricing, however,
we will need digress and show how individual consumer surplus aggregates
to overall consumer surplus.

Aggregate Consumer Surplus 4.2
Our objectives in this section are (i) to reconsider individual consumer surplus
and (ii) show how it aggregates into overall or total consumer surplus.

Recall, from our derivation of individual demand (see pages 59–63), that an
individuals consumer surplus is

cs(q) = b(q)− pq

when she pays p per unit. The functionb(·), recall, is her benefit function and
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dead-
weight
loss

price ($/unit)

quantity (q)

P(q)

q∗

P(0)

P(q∗) MC(q)

MR(q)

Figure 4.2: The shaded triangular region is the deadweight loss induced by
simple pricing.

we interpret b(q) to be her benefit, measured in dollars, of having q units of
the good in question. Also remember that, for q > 0, her demand curve and
her marginal benefit schedule are coincident (see Figure 3.5). For q = 0, her
demand curve is coincident with the vertical (price) axis. Lastly, remember,
Proposition 6 on page 43: The area under a marginal curve is the total func-
tion. Observe, therefore, that a consumers total benefit from q units, b(q), is the
area under her marginal benefit curve from 0 to q units.1 Her marginal cost is
just p, so her total cost of q units is the area under the price line (the horizontal
line of height p) from 0 to q units; that is, pq. Graphically, if we subtract the area
under the price line from the area under the marginal benefit curve, then we
get the area under the marginal benefit curve but above the price line. In other
words, the individual’s consumer surplus is the area beneath her marginal ben-
efit curve and above the price line from 0 to q units. Figure 4.3 illustrates.

One way to think about the individual’s consumer surplus is the following.
What is it worth to the consumer to be able to buy q units at a price of p per
unit? Well her “profit,” her consumer surplus, is cs(q). If she had to pay more
than cs(q) for the ability to purchase q units at p per unit, she wouldn’t do it—
she would lose. If she had to pay less than cs(q), she would do it because she’d
still come out ahead. Therefore, we can consider cs(q) to represent the most

Consumer
surplus: The
consumers value of
the right to buy a
given number of
units at a given
price per unit.

that the consumer would be willing to pay for the right to buy q units at a price
of p.

An area is an area. It doesn’t matter, therefore, if we view the individual’s

1In case you were wondering why I wrote b(q) and not b(q)− b(0), the answer is b(0) = 0.
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$/unit

units

demand, d(p),
and marginal benefit, mb(q)

q

p
cs(q)

mb(0)

Figure 4.3: If we subtract the area of the rectangle whose lower left corner
is the origin and whose upper right corner is (q, p) from the area
beneath the marginal benefit curve, mb(·), from 0 to q units, we’re
left with the shaded triangle, which is the individual’s consumer
surplus, cs(q), from q units purchased at p per unit.
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consumer surplus as the area beneath the marginal benefit schedule, but above �
the price line, from 0 to q units or we view it as the area under her demand
curve from p to mb(0). Suppose, further, that we add to this area the area
under her demand curve from p = mb(0) to infinity. This doesn’t change the
amount of the original area because there is no area under the demand curve
from mb(0) to infinity (recall the demand line is coincident with the vertical
axis in this interval). Hence, we don;t change the area shown in Figure 4.3 if
we add on the area under her demand curve from mb(0) to infinity (the reason
for adding this zero will become clear later). We can, therefore, describe the
individuals consumer surplus as follows.

Proposition 19. At price p, an individual’s consumer surplus is the area under her
demand curve from p to infinity.

In light of this result, in addition to writing her consumer surplus as cs(q), we
will also write it as A∞

p (d), where this notation means the area under demand,

d(·), from p to infinity.2

It makes sense to define aggregate consumer surplus as the sum of the in-
dividuals’ consumer surpluses. Let CS denote aggregate consumer surplus. At �
a given price, p, we have, therefore, that

CS = A∞
p (d1) + · · ·+ A∞

p (dN) ,

where di denotes the demand schedule of the ith individual in a population
of N consumers. The area operator, A∞

p (·), is linear, meaning that we can dis-
tribute it out of the summation. That is,

CS = A∞
p (d1) + · · ·+ A∞

p (dN)

= A∞
p (d1 + · · ·+ dN) (distributing out)

= A∞
p (D) (sum of individuals’ demands is aggregate demand)

In other words, we’ve just established the following.3

Proposition 20. Aggregate consumer surplus, CS, at price p is the area under the
aggregate demand curve, D(·), between p and infinity.

We also know that �

2 ∫
dx Observe A∞

p (d) =
∫ ∞

p d(z)dz, where z is the dummy of integration.

3 ∫
dx Observe,

CS =
N

∑
i=1

∫ ∞

p
di(z)dz =

∫ ∞

p

(
N

∑
i=1

di(z)

)

dz =
∫ ∞

p
D(z)dz ,

where the first equals follows because the summation operator can be passed through the integral
(i.e., integration is a linear operation).
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CS = cs1(q1) + · · ·+ csN(qN)

=
(
b1(q1)− pq1

)
+ · · ·+

(
bN(qN)− pqN

)

=
N

∑
i=1

bi(qi)−
N

∑
i=1

pqi

=
N

∑
i=1

bi(qi)− pQ ,

where Q is the total amount demanded by all consumers at p; that is, Q =
D(p). Hence,

A∞
p (D) = CS =

N

∑
i=1

bi(qi)− pQ . (4.1)

Observe that we can also view A∞
p (D) + pQ as the area under the aggregate

inverse demand curve from 0 to Q units. From the last equation,

Area under aggregate inverse demand =
N

∑
i=1

bi(qi) ≡ B(Q) ,

where we define B(Q), aggregate benefit, to be the sum of individual benefits.
We have, thus, derived:

Proposition 21. The area under the inverse demand curve, P(·), from 0 to Q units
is the total or aggregate benefit, B(Q), enjoyed by consumers from the Q units.

If the area under the aggregate inverse demand curve is aggregate benefit,
then it must be that the curve itself is marginal aggregate benefit (recall Propo-
sition 6). In other words, if MB(·) is the marginal aggregate benefit schedule,
then we’ve shown that

Proposition 22. P(q) = MB(q) for all q > 0.

The Holy Grail of Pricing 4.3
Observe that the benefit generated by q units sold is B(q). The cost to the firm
of producing q units is C(q). Hence, the total value created is B(q)C(q). This
difference is called total welfare and denoted by W(q); that is,

W(q) = B(q)− C(q) .

If a firm sold q units, it could never hope to gain more profits that W(q).
Why? Because W(q) is the total value created—the whole “pie” as it were—
so if the firm were getting more than the whole pie, then consumers must be
receiving less than zero. But consumers will opt not to buy rather than get less



4.3 The Holy Grail of Pricing 85

price ($/unit)

quantity (q)

P(q) = MB(q)

q∗

P(0)

P(q∗) MC(q)

q∗∗

Figure 4.4: Welfare (total surplus) is maximized if q∗∗ units trade.

than zero. Therefore, W(q) represents the most that the firm could ever hope
to capture.

Suppose the firm could capture all of W(q). How much would it choose
to produce? Looking at B(·) as being like R(·), our earlier analysis of simple
pricing tells us that the candidate for the welfare-maximizing amount, q∗∗, is
the one that solves

MB(q) = MC(q) .

From Proposition 22, this can be rewritten as

P(q∗∗) = MC(q∗∗) .

We can summarize this as

Proposition 23. If the firm can capture all the welfare generated from selling q units
(i.e., W(q)), then the firm will want to produce to the point at which inverse demand
intersects marginal cost.

Figure 4.4, which replicates Figure 4.2, illustrates.
From Figure 4.4, we see that part of the gain the firm would enjoy, were it

to capture maximized welfare, is the deadweight loss (the gray area). That is,
were it able to capture all the welfare, it would be able to pick up the money
left on the table by simple pricing. Furthermore, because the firm is capturing
all the gains from trade (i.e., all the value created), there can’t be any left for the
customers. That is the firm is also capturing all of the consumers’ surplus (the
orange area) as well.



86 Chapter 4: Advanced Pricing

As noted, producing q∗∗ units and capturing all of welfare is the very best
the firm could ever do. It is, therefore, the “Holy Grail” of pricing; it is what
the firm would ideally like to do.

Because this outcome is so good, any form of pricing that achieves this Holy
Grail is known as perfect price discrimination. For historic reasons, perfect
price discrimination is also known as first-degree price discrimination.

Two-Part Tariffs 4.4
Can the firm ever obtain the Holy Grail? Generally, the answer is no. However,
it can certainly get closer than it does by using simple pricing. In fact, if all
consumers are the same in terms of their individual demand for the good, then
the firm could actually obtain the Grail.

In this section, we explore a type of pricing called a two-part tariff . A two-
part tariff can help get a firm closer to the Grail than can simple pricing. A two-
part tariff is a pricing scheme (tariff) with, as the name indicates, two parts.

Two-part tariff:
Pricing with an entry
fee and a per-unit
charge.

One part is what’s called the entry fee . It is the amount that the consumer
must pay before she can buy any units at all. In this sense, it is like a consumer
overhead charge. As a real-life example, consider it to be like the fee one pays
to enter an amusement park.4 The second part of a two-part tariff is the per-
unit charge . It is the amount that the consumer must pay for each unit she
chooses to purchase. At an amusement park, it would correspond to the price
of each ride ticket. In some instances, as with some—but not all—amusement
parks, the per-unit charge might even be set to zero.

Formally, consider a two-part tariff consisting of an entry fee, F, and a per-
unit charge, p. A consumers expenditure, T(q), if she buys q units is

T(q) =

{
0 , if q = 0
pq + F if q > 0

,

The function T(·) is the tariff.
How much will a consumer buy under this tariff? If she pays the entry fee,

then it is sunk; and her decision on how many to buy is the same as under
simple pricing. That is, she chooses the q that equates her marginal benefit to p
(i.e., the q such that mb(q) = p). This is equivalent to saying that she buys d(p)
units, where d(·) is her individual demand schedule. We noted earlier that the
value to a consumer of being able to buy q units at a price of p per unit was
worth cs(q) = cs

(
d(p)

)
. Hence, when she decides whether or not to pay the

entry fee, she asks herself whether F exceeds cs
(
d(p)

)
. If it does, then it isn’t

worth it to her to pay the fee; she’s better off not buying at all. If it doesn’t,
then she should pay the fee. We can summarize the consumer’s decision as

units consumer buys =

{
0 , if F > cs

(
d(p)

)

d(p) , if F ≤ cs
(
d(p)

) . (4.2)

4In fact, for this reason, two-part tariffs are sometimes called “Disneyland” pricing .
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The question of whether F is less than or greater than cs
(
d(p)

)
is known as a

participation constraint . It determines whether or not the consumer is willing
to participate (i.e., buy) under the pricing scheme.

All consumers are identical

In this section, we consider the case in which there are N consumers, each of
whom has the same demand for the firm’s product or service. Using expression
(4.2), we see that each consumer buys d(p) units if F ≤ cs

(
d(p)

)
and 0 units

otherwise. This means the firm’s profits are

π =

{
0 , if F > cs

(
d(p)

)

N
(
F + pd(p)

)
− C

(
Nd(p)

)
, if F ≤ cs

(
d(p)

) , (4.3)

where the Nd(p) term arises because if it sells d(p) units to each customer, it
sells Nd(p) units in total.

We anticipate that the firm wants to operate, so it will set

F ≤ cs
(
d(p)

)
.

From expression (4.3), the firm’s profit is increasing in F, so it wants to make F
as large as possible. But, as just seen, the largest possible F is cs

(
d(p)

)
. There-

fore, the profit-maximizing entry fee is F = cs
(
d(p)

)
. Using this, we can sub-

stitute out F in expression (4.3) and write

π = N
(
cs
(
d(p)

)
+ pd(p)

)
− C

(
Nd(p)

)
.

Observe that Nd(p) is aggregate demand, D(p). Let Q = D(p) and observe
that p = P(Q), where P(·) is aggregate inverse demand. We can, therefore,
rewrite the firm’s profit as

π = Ncs

(
Q

N

)

+ P(Q)Q − C(Q) .

Recall, from our discussion in Section 4.2, that aggregate consumer surplus,
CS, is the sum of the individual consumer surpluses. Hence,

π = CS + P(Q)Q − C(Q) .

Observe, in this last expression, that profit is the sum of the consumers’ surplus
and the profits that the firm would have made under simple pricing. We can
see already, therefore, that this two-part tariff yields greater profits than simple
pricing would.

Finally, recall from expression (4.1) that CS is total benefit less expenditure,
pQ. We have, therefore, that

CS = B(Q)− P(Q)Q ;
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hence,

π = B(Q)− P(Q)Q + P(Q)Q − C(Q)

= B(Q)− C(Q) = W(Q) . (4.4)

We’ve thus shown that, if all the consumers are identical (homogeneous), prof-
its under a two-part tariff achieve the Holy Grail! That is, a two-part tariff al-
lows the firm to capture all the gains to trade. In other words, a two-part tariff
with identical consumers achieves perfect or first-degree price discrimination.

From Proposition 23, we know that a firm that captures all the gains to trade
maximizes profit by producing the amount that equates inverse demand and
marginal cost. We can, therefore, conclude as follows.

Proposition 24. Suppose consumers have identical demands (are homogeneous). Un-
der the profit-maximizing two-part tariff, the firm

(i) produces q∗∗ units, where P(q∗∗) = MC(q∗∗);

(ii) sets the per-unit charge, p, equal to P(q∗∗); and

(iii) sets the entry fee, F, to equal cs
(
d(p)

)
(or, equivalently, sets it equal to CS/N).

Example 20 [An amusement park]: Consider an amusement park. Ig-
noring possible congestion costs, it seems reasonable to approximate the
park’s marginal cost of a seat on a ride as being 0. Suppose that all 50,000
patrons who come into the park have approximately the same demand for
rides. Suppose that market research has revealed that demand to be

d(p) =

{
50 − 12.5p , if p ≤ 4
0 , if p > 4

.

What is the optimal two-part tariff for this amusement park to use?
From Proposition 24, the per-unit charge—that is, the price per ride—

should be set equal to marginal cost, which in this case is zero. So p = 0.
What about the entry fee? It should be set to cs

(
d(p)

)
. We can calculate this

quantity in two ways. First, we can calculate it as A∞
0 (d); that is, as the area

under individual demand from 0 to infinity. Alternatively, we can deter-
mine the marginal-benefit schedule and, then, calculate consumer surplus
as the area under the marginal-benefit schedule and above the price line
(here, the horizontal axis) from 0 to d(0) units. For purposes of illustration,
we will do both.

At p = 4, d(p) = 0. Hence, the area under the demand curve from 0 to
infinity is equal to the area under the demand curve from 0 to 4. If you plot
the demand curve, you will see that it is a right triangle with height 4 and,
because d(0) = 50, width 50. Its area is, thus, 100.5 So the entry fee is $100.

Alternatively, we know

q = 50 − 12.5mb(q) ;

5Recall the area of a triangle is base × height ÷ 2.
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hence,

mb(q) = 4 − .08q .

Plotting this, we see it is a triangle with height 4 and width d(0) = 50. So
its area is also 100 (of course, it had be to be the same—these are equivalent
procedures). So the entry fee is $100.

Example 21: A firm’s cost is C(q) = q2/2000. It faces 1000 identical cus-
tomers, each of whom has demand

d(p) =

{
10 − p , if p ≤ 10
0 , if p > 10

.

What is the optimal two-part tariff for it to employ? Unlike the amusement
park example, here marginal cost is not a constant. Using Proposition 3 on
page 39, marginal cost is MC(q) = q/1000.

We, next, need to calculate inverse aggregate demand. To do so, first we
need to determine aggregate demand, D(·), then invert that to get inverse
aggregate demand, P(·).

D(p) = 1000d(p) =

{
10, 000 − 1000p , if p ≤ 10
0 , if p > 10

.

When demand is positive, we have

Q = 10, 000 − 1000P(Q) ;

hence,

P(Q) = 10 − Q

1000
.

Next, equate P(Q) and MC(Q):

10 − Q

1000
=

Q

1000
.

So Q∗∗ = 5000. P(Q∗∗) = P(5000) = 5. So the per-unit charge, p, is $5.

What about the entry fee? The area under d(·) from 5 to infinity is, be-
cause d(10) = 0, the same as the area under d(·) from 5 to 10. Plotting,
we see that corresponds to the area of the right triangle with vertices (0,5),
(5,0), and (0,10). Its height is 5 and its width is 5, so its area is 12.5. There-
fore, the entry fee is $12.50.

Consumers are heterogenous

What if consumers don’t all have the same demand curves? The firm can still
profit from using a two-part tariff, but designing the optimal two-part tariff be-
comes much more complicated. Moreover, the elements of its design depend
critically on a number of properties of the demand curves and how they vary
across individuals (for example, the analysis is sensitive to whether individual
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demand curves cross each other or not). Because it is so involved, an inves-
tigation of two-part tariff design with heterogeneous customers is beyond the
scope of text such as this.6

One strategy, which we will explore in greater depth when we deal with
third-degree price discrimination, would be to divide customers into homo-
geneous groups, then employ the optimal two-part tariff on each group. For
example, an amusement park might conclude that seniors have very different
demands for rides than others, so it has a different admission price for them.

Real-life use of two-part tariffs

Amusement parks have already been offered as a real-life example of firms that
use two-part tariffs. Cover charges at bars, night clubs, and similar venues, are
examples of entry fees, with the price per drink being the per-unit charge. Club
stores (e.g., Costco) that have membership fees are yet another example of two-
part tariffs.

Because the per-unit charge could be zero, many two-part tariffs are hard to
recognize initially. For example, service plans or tech-support plans are “dis-
guised” two-part tariffs: The entry fee is the price of the plan and the per-unit
charge is often zero. Of course, some plans like these have both a positive entry
fee (plan price) and a positive per-unit charge (service-call charge).

The pricing of telephony is another example. For land-line phones, a com-
mon plan is one in which you pay an access fee per month plus some amount
per call. Many calling plans are more complicated than this; they, for instance,
charge a monthly fee, provide some minutes worth of calls at a very low fee
(often zero), and then charge a different price per call for minutes beyond the
provided minutes. These plans are examples of multi-part tariffs. Some of our
analysis of second-degree price discrimination touches on multi-part tariffs,
but a general analysis of multi-part tariffs is beyond the scope of this course..7

What limits two-part tariffs?

If two (or multi-) part tariffs are so great, why don’t we see more of them?
That is, why are amusement park rides and telephone minutes sold using such
tariffs, while things such as cereal and soda are not (or at least appear not to
be)?

The answer has, in part, to do with arbitrage.8 Suppose a grocery store
attempted to sell soda using a two-part tariff. It would pay someone to break

6For the motivated, a good book on nonlinear pricing is Robert B. Wilson’s Nonlinear Pricing,
Oxford: Oxford University Press, 1993. This book will only be accessible if you’re very comfortable
with calculus.

7Again, the motivated student may wish to consider Robert B. Wilson’s Nonlinear Pricing, Ox-
ford: Oxford University Press, 1993.

8Some other reasons for not using two-part tariffs are the costs of monitoring entry and hetero-
geneity among customers.
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the scheme by paying the entry fee, then buying more soda than he wants
in order to resell it to others. As long as his resale price exceeds his average
cost, p + F/q, where q is the amount he is reselling, he is making a profit.
Because they are avoiding the entry fee, his customers can find it cheaper to
buy soda from him than from the grocery store. So we see that a grocery store
attempting to sell soda using a two-part tariff would find its scheme collapsing
due to arbitrage. In the limit, it would sell lots of soda to just one enterprising
customer.

Unlike soda, which is easily resold, items like amusement park rides, tele-
phone calls from your house or cell phone, service calls to your place of busi-
ness, etc., are difficult, if not impossible, to resell. There is little danger of
arbitrage. Hence, we expect to see two-part tariffs with items that are difficult

Two-part tariffs:
Are more readily
used when arbitrage
is difficult.

to resell and not to see such tariffs with items that are readily resold.
However, firms can attempt to defeat arbitrage. For instance, the grocery

store could use a two-part tariff for some goods in the following way. Suppose
that rather than being sold in packages, sugar were kept in a large bin and
customers could take as much or as little as they like (e.g., like fruit at most
groceries or as is actually done at some stores like Berkeley Natural Grocery).
Suppose that, under the optimal two-part tariff, each consumer would buy
two pounds of sugar at a price p per pound, which would yield him or her
surplus of cs, which would be captured by the store using an entry fee of F =
cs. Of course, arbitrage makes this infeasible. So suppose, in response, that
rather then let consumers buy as much or as little sugar as they want, the store
packaged sugar in two-pound bags, for which it charged 2p + cs per bag. Each
customer would face the decision of whether to have 0 pounds or 2 pounds.
Each customer’s total benefit from two pounds is 2p + cs, so each would just
be willing to pay 2p + cs for the package of sugar. Because the entry fee is
paid on every two-pound bag, the store has devised an arbitrage-proof (albeit
disguised) two-part tariff. In other words, packaging—taking away customers

Packaging: An
arbitrage-proof way
of implementing a
two-part tariff.

ability to buy as much or as little as they wish—can represent an arbitrage-
proof way of employing a two-part tariff.

Metering

In addition to packaging and setting the per-unit price to zero, a third way in
which two-part tariffs are disguised is via metering. Metering—also known as
tying—has to do with situations in which the entry fee is the purchase price
for a durable good (e.g., an instant camera, a razor handle, a punch-card sort-
ing machine, etc.) and the per-unit charge is the purchase price for a comple-
mentary good (e.g., instant film, cartridge razor blades, punch cards, etc.). For
example, one can view Gillette as using a two-part tariff to sell Mach 3 razor
cartridges. The price of the handle (or a package with handle and some car-
tridges) represents the entry fee. The price of cartridge replacement packs is
the per-unit charge.

Metering only works if the firm can keep others from making the comple-
mentary good. In the cases of Gillette or Polaroid, intellectual property rights
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prevent others from making cartridges that fit Gillette handles or instant film
that works in Polaroid cameras. For commodity products, like punch cards
and paper, firms used to attempt to prevent others from providing the comple-
mentary good through contracts. That is, IBM would, through various contract
terms, require or strongly encourage users of its punch-card sorting machines
to buy IBM punch cards. Xerox would likewise require or strongly encourage
users of its photocopiers to use Xerox paper (as well as Xerox toner, etc.). In
the US, such requirements or pressure via contract have been deemed to violate
the antitrust laws (these are forms of illegal tying).

Although we have introduced metering as a way to engage in a two-part
tariff, metering can also be useful for other forms of price discrimination (e.g.,
second-degree price discrimination through quantity discounts). Metering can
also be useful as a way of providing customer credit—the camera price or the
printer price is a down payment, the customer is “loaned” the rest of the cam-
era’s or printer’s full price, and the film price or toner cartridge price contains
a repayment (principal and interest) portion on the original loan taken out by
buying the camera or printer. For instance, if the auto companies could com-
pel you to buy gasoline from them only, then they could provide car financing
through a low car price and a high gasoline price.

Third-Degree Price
Discrimination 4.5

In this section, we consider third-degree price discrimination.9 Third-degree
price discrimination means charging different tariffs to different consumers on
the basis of identifiable characteristics. An example of third-degree price dis-

Third-degree price
discrimination:
Charging different
prices on the basis
of observed group
membership.

crimination is a movie theater that charges a different price for children, a dif-
ferent price for seniors, and a different price for other adults.10 The characteris-
tics on which the theater distinguishes among patrons are readily identifiable,
either by cashier observation or presentation of ID.

Senior-citizen discounts, child discounts, student discounts, and family dis-
counts are all familiar forms of third-degree price discrimination. Ladies’ nights
at bars and similar venues are another form of third-degree price discrimina-
tion (albeit one also motivated by network externalities).11 Sometimes third-
degree price discrimination is on the basis of membership in certain organi-
zations (e.g., AAA discounts or discounts to members of the local public radio
station).

Geography-based third-degree price discrimination is also quite prevalent.
For example, a firm may quote different prices to buyers in one area than it

9Yes, I can count. Regardless of the order implied by their names, it makes more sense peda-
gogically to consider third-degree price discrimination before second-degree price discrimination.

10If the over-60 set are senior citizens, does that make the rest of us “junior citizens”?

11Network externalities refer to situations in which one person’s demand (e.g., a guy looking to
meet women) is a function of the demand of others (e.g., how many women are at the bar).
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does to buyers in another area. This happens, for instance, in air travel, where
a round-trip ticket going city A to city B back to city A has a different price
than one going B to A back to B (this is especially true if A and B are in dif-
ferent countries). A third-degree pricing example that occasionally engenders
newspaper articles and editorials is the different prices pharmaceutical com-
panies charge for their drugs in different countries.

The simple case

The most basic situation of third-degree price discrimination is when a firm en-
gages in simple pricing to two distinct groups when the firm faces no capacity
constraints.

Let Pi(·) be the inverse aggregate demand of two populations indexed by
i, i = 1 or 2. For instance, P1(·) could be the inverse aggregate demand of
students for a concert and P2(·) could be the inverse aggregate demand of non-
students. Let C(·) be the firm’s cost function. Let qi be the amount sold to
population i. The firm’s profit is its revenue from each population less its costs:

π(q1, q2) = q1P1(q1) + q2P1(q2)− C(q1 + q2) .

Using Proposition 15 on page 72, we can write

MRi(qi) = Pi(qi) + qiP
′(qi) .

We denote marginal cost in the usual way, MC(q1 + q2).
How much should the firm sell to each population? From our earlier anal-

ysis, a good guess would be the amounts that equate the marginal revenues to
marginal cost. This guess is, in fact, correct. Let’s see why. Clearly, it cannot be
optimal to produce so that

MRi(qi) < MC(q1 + q2)

because the firm could increase its profit by

MC(q1 + q2)− MRi(qi)

if it sold one less unit to population i. What if

MRi(qi) > MC(q1 + q2) ? (4.5)

Then the firm could increase its profit by

MRi(qi)− MC(q1 + q2)

if it sold one more unit to population i. So it cannot be optimal to produce so
that expression (4.5) holds. By process of elimination, this leaves

MR1(q
∗
1) = MR2(q

∗
2) = MC(q∗1 + q∗2) (4.6)

at the profit-maximizing quantities, q∗1 and q∗2 . This analysis generalizes to N
populations:
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Proposition 25. A firm unconstrained in the amount it can produce and that can
engage in simple pricing to N distinct populations maximizes its profit by selling q∗i
to population i, where

MR1(q
∗
1) = · · · = MRN(q

∗
N) = MC

(
N

∑
i=1

q∗i

)

.

Observe this expression could also be written as

MR1(q
∗
1) = MC

(
N

∑
i=1

q∗i

)

...

MRN(q
∗
N) = MC

(
N

∑
i=1

q∗i

)

.

As with simple pricing, the price charged population i is Pi(q
∗
i ).

Because a possible result with this type of third-degree price discrimina-
tion is that P1(q

∗
1) = · · · = PN(q

∗
N), optimal nondiscriminatory simple pricing

(i.e.,treating all populations the same) is a possible outcome of third-degree
price discrimination. From this, we see that third-degree price discrimination
can never do worse than nondiscriminatory simple pricing. Moreover, if we
find Pi(q

∗
i ) 6= Pj(q

∗
j ) for two populations i and j, then it must be that third-

degree price discrimination is generating strictly greater profits.

Example 22: Consider a firm (e.g., a pharmaceutical company) that has
the cost function C(Q) = Q2/1000. Observe, using Proposition 3, that its
marginal cost is Q/500. Suppose it faces two populations (e.g., Americans
and Canadians), i = 1, 2. Let their aggregate demands be

D1(p) =

{
100, 000 − 1000p , if p ≤ 100
0 , if p > 100

and

D2(p) =

{
150, 000 − 2000p , if p ≤ 75
0 , if p > 75

.

Inverting these demands over the range of positive demand:

q1 = 100, 000 − 1000P1(q1) and

q2 = 150, 000 − 2000P2(q2) .

Therefore,

P1(q1) = 100 − q1

1000
and

P2(q2) = 75 − q2

2000
.
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Using Proposition 15, we have

MR1(q1) = 100 − q1

1000
+ q1

( −1

1000

)

= 100 − q1

500
and

MR2(q2) = 75 − q2

2000
+ q2

( −1

2000

)

= 75 − q2

1000
.

We can now employ Proposition 25 to solve for q∗1 and q∗2 :

100 − q1

500
=

q1 + q2

500
and

75 − q2

1000
=

q1 + q2

500
.

Using the methods for two equations in two unknowns set forth in Ap-
pendix A2, we obtain: q∗1 = 18, 750 and q∗2 = 12, 500. This yields prices:

P1(18, 750) = $81.25 and P2(12, 500) = $68.75 .

Observe the firm’s profit is

18, 750 × $81.25 + 12, 500 × $68.75 − 31, 2502

1000
dollars = $1, 406, 250 .

Because the prices to the two population are not the same, we know the
firm’s profit is greater than if it were forced to charge the same price to
both populations.12

The capacity-constrained firm

Consider a concert hall that is considering different prices to students and non-
students for a particular show. Assume this company’s cost function is

C(q) =

{
0 , if q = 0
q + 20, 000 , if q > 0

,

where q is the number of seats sold. Observe the marginal cost per seat is small,
just $1, while the overhead cost of the show is relatively high.

Unlike the situation in Example 22, the company is constrained: It cannot
sell more tickets than it has seats. This will pose a problem if the optimal third-
degree pricing scheme indicates q∗S tickets should be sold to students and q∗N
tickets should be sold to non-students, but

q∗S + q∗N > K ,

where K is the number of seats in the concert hall (the capacity).

12It can be shown—indeed, as an exercise you may wish to do the calculations—that the firm’s
profit if it had to charge the same price in both markets would be $1,302,080.
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Let’s suppose that expression () is true. Then the firm’s problem in design-
ing the optimal third-degree price discrimination scheme is to choose the qS

and qN that maximize profit,

qSPS(qS) + qN PN(qN)− (qS + qN + 20, 000)
︸ ︷︷ ︸

C(qS+qN)

subject to the constraint qS + qN ≤ K. By assumption, this constraint is binding;
that is, we know qS + qN = K (if it weren’t binding, then we could design the
scheme ignoring it, but then we would get a solution, q∗S and q∗N , that violated
the constraint). Substituting into our expression for profit, we can write the
profit as

qSPS(qS) + qN PN(qN)− (K + 20, 000)
︸ ︷︷ ︸

C(qS+qN)

.

Note that expenses, K + 20, 000, are a constant; that is, our problem is indepen-
dent of them. This makes sense from an opportunity-cost point of view: We’ve
already decided we’re selling all K seats—that decision is sunk—what we’re
deciding, now, is how to allocate those seats.

Thinking further along opportunity cost lines, we can solve for the optimal
constrained allocation. What is the opportunity cost of selling the marginal
seat to a student? It is the forgone value of selling that seat to a non-student.
What’s that value? It’s the marginal revenue that would be realized by selling
that seat to a non-student. In other words, we’ve just seen that the marginal
cost of selling a seat to a student is the marginal revenue that seat would yield
if sold to a non-student. Formally, we have

MCS(qS) = MRN(qN) = P(qN) + qN P′(qN) ,

where the second inequality follows from the usual formula for marginal rev-
enue under simple pricing and MCS(·) is the marginal cost schedule for seats
sold to students.

Profit-maximization requires equating marginal revenue to marginal cost.
So we know that

MRS(qS) = MRS(qS) .

at the optimal number of seats to sell to students. Substituting for MCS(qS),
we have

MRS(qS) = MRN(qN) = P(qN) + qN P′(qN) . (4.7)

That is, given constrained capacity, the optimal quantities for the two popula-
tions will equate their marginal revenues. Expression (4.7) is one equation in
two unknowns, qS and qN . Fortunately, we have a second equation, namely
the constraint:

qS + qN = K . (4.8)

We can conclude:
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Proposition 26. If a firm faces a binding constraint of K units and it faces two pop-
ulations, N and S, then the optimal quantities, q̂N and q̂S, to be sold to the two popu-
lations equate the two populations’ marginal revenues and they sum to K; that is, the
quantities solve expressions (4.7) and (4.8).

The prices to be charged to the two populations are PS(q̂S) and PN(q̂N) for
students and non-students, respectively.

Example 23: Let’s put some more numbers to our analysis of this concert
hall’s pricing problem. Specifically, suppose

PS(qS) = 41 − qS/10 and

PN(qN) = 101 − qN/10 .

Suppose that capacity, K, is 500 seats.

If the number of seats in the hall were not constrained, the firm would
determine its optimal allocation from MRS(qS) = MC(qS + qN) and MRS(qS) =
MC(qS + qN) (see Example 22). Here, those expressions are

41 − qS/5 = 1 and

101 − qN/5 = 1, ,

respectively. The solutions are q∗S = 200 and q∗N = 500. Because 200 +
500 > 500, this “solution” doesn’t work given the concert hall’s seating
capacity.

Now employ Proposition 26: Equating the marginal revenues, we have

41 − qS/5 = 101 − qN/5 .

We also have the constraint

qS + qN = 500 .

Solving these two equations yields q̂S = 100 and q̂N = 400. The ticket
prices are PS(100) = $31 and PN(400) = $61 for students and non-students,
respectively. Profit is

100 × $31 + 400 × $61 − $20, 500 = $7000 .

Note, a naı̈ve approach might have been the following: Seeing that
q∗N = 500 = K, one might have concluded that one should sell to non-
students only. Selling 500 seats to non-students would mean a price of
PN(500) = $51. Observe this price is greater than the price any student
would be willing to pay, so charging $51 per seat would, indeed, result in
only non-students attending. Yet, the profit from this naı̈ve approach is
less than the optimal amount: 500 × $51 − $20, 500 = $5000. This naı̈ve
approach would cost the concert hall $2000 in profit.
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Third-degree price discrimination and other forms of
discrimination

We have seen that segmenting the population on the basis of identifiable group-
ings and, then, treating each group separately for the purpose of simple pricing
yields a firm greater profit than setting a single price for everyone.

Sometimes a firm can do even better if it combines segmentation on the
basis of groupings and other forms of discrimination. For example, a local bar
with a live band once advertised: “No cover charge for ladies.” That is, the bar
was using a two-part tariff for men—an entry fee and a per-unit (i.e., per drink)
charge—but a single-part tariff for women.

When, for instance, a firm sells a package for one price in one country and
a different price in another, then it is combining third-degree price discrimina-
tion (pricing on the basis of group) and a two-part tariff (remember, a package
is one way to implement a two-part tariff).

Going through all the ways in which different forms of price discrimination
can be combined is beyond the scope of this text—but as you think about pric-
ing in your careers, keep in mind that these different forms can be combined.

Arbitrage

Because, under third-degree price discrimination, different populations face
different tariffs, there is the opportunity for arbitrage. A student, for instance,
could resell his ticket to a non-student. Hence, the ability to employ third-
degree price discrimination effectively is dependent on an ability to prevent
arbitrage (this is true, actually, of all discriminatory pricing).

In many instances, the ability to distinguish members of the different pop-
ulations forecloses arbitrage. A non-senior with a senior ticket can be denied
admission, for example. In other situations, especially when geography is used
to identify different groups, it is much harder (e.g., witness Americans going to
Canada to buy prescription medications). In some cases, transportation costs
deter geographic arbitrage. This is why, for instance, a firm can charge very dif-
ferent prices in West Virginia and California, but needs to charge fairly similar
prices in San Francisco and San Jose.

Second-Degree Price
Discrimination 4.6

As we’ve seen, third-degree price discrimination can yield greater profits than
simple pricing. But it requires being able to identify the members of different
populations (e.g., students from non-students). What if you can’t readily iden-
tify who’s in what group (market segment)? For instance, we know that busi-
ness travelers are willing to pay more for plane tickets than vacationers. But
mere inspection wont tell you which would-be flier is a business woman and
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which is a woman going on vacation.13 Fortunately, in some circumstances,
it is possible to induce customers to reveal the group to which they belong.

Second-degree
price
discrimination:
Price discrimination
via induced
revelation of
preferences.

Price discrimination via induced revelation of preferences is known as second-
degree price discrimination.

A well-known solution to the problem of not being able to distinguish busi-
ness from leisure travelers by inspection is for the airlines to offer different
kinds of tickets. For instance, because business travelers don’t wish to stay
over the weekend or often can’t book much in advance, the airlines charge
more for round-trip tickets that don’t involve a Saturday-night stayover or that
are purchased within a few days of the flight (i.e., in the latter situation, there is
a discount for advance purchase). Observe an airline still can’t observe which
type of traveler is which, but by offering different kinds of service it hopes to
induce revelation of which type is which.

Restricted tickets are one example of second-degree price discrimination,
specifically of second-degree price discrimination via quality distortions. Be-
cause a restricted ticket is less useful than an unrestricted ticket, a restricted
ticket can be viewed as being lower quality than an unrestricted ticket. Other
examples include:

• Different classes of service (e.g., first and second-class carriages on trains).
The classic example here is the French railroads in the th century, which
removed the roofs from second-class carriages to create third-class car-
riages.

• Hobbling a product. This is popular in high-tech, where, for instance, In-
tel once produced two versions of a chip by “brain-damaging” the state-
of-the-art chip. Another example is software, where “regular” and “pro”
versions (or “home” and “business” versions) of the same product are
often sold.

• Restrictions. Saturday-night stayovers and advance-ticketing require-
ments are a classic example. Another example is limited versus full mem-
berships at health clubs.

The other common form of second-degree price discrimination is via quan-
tity discounts. This is why, for instance, the liter bottle of soda is typically less
than twice as expensive as the half-liter bottle. Quantity discounts can often be
operationalized through multi-part tariffs, so many multi-part tariffs are exam-
ples of price discrimination via quantity discounts (e.g., choices in calling plans
between say a low monthly fee, few “free” minutes, and a high per-minute
charge thereafter versus a high monthly fee, more “free” minutes, and a lower
per-minute charge thereafter).

13Although the two might dress differently, if airlines started charging different prices on the
basis of what their passengers wore, then their passengers would all show up wearing whatever
clothes get them the cheapest fare.
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Quality distortions

Suppose there are two types of users of a given kind of software. Casual users
value the core capabilities of the software at $50 and the ancillary capabilities
at $25 (think of the core capabilities as, e.g., basic wordprocessing and the an-
cillary capabilities as, e.g., the ability to do mail-merges). Business users value
the core capabilities at $80 and the ancillary capabilities at $60. Assume the
marginal cost of producing a unit of the software is zero and that the seller
of the software faces irrelevantly small costs to produce a version without the
ancillary capabilities.

Let r denote the ratio of business to casual users. What we wish to explore
is, as a function of r, what version or versions does the software manufacturer
produce and what price or prices does it charge.

A naı̈ve answer might be that, regardless, of r, the manufacturer offers a
home version with the core capabilities at a price $50 and a pro/business ver-
sion with the ancillary features at $80 + $60 = $140. But, were it to do so,
then no one would buy the business version. This is obvious for the casual
(home) user: The value of the business version to him is $75, which is less than
$140. But it is also true of the business user. To see this, recall that any con-
sumer seeks to maximize his or her consumer surplus—that is, the difference
between the benefit he or she derives and the amount he or she pays. The con-
sumer surplus enjoyed by a business user who purchases the business version
is $0 (= $140− $140). The consumer surplus the business user who purchases
the home version is $30 (= $80 − $50). The business user would, thus, opt to
buy the home version.

Our consideration of the naı̈ve answer reveals what is critical to the answer:
If the manufacturer is to induce a business user to reveal she is a business user
by getting her to buy the business version, then the manufacturer must leave
her at least as much surplus as she would get were she to buy the home version.
That is, if both products are sold, with the home version being priced at $50,
then the difference between the price of the business version and a business
user’s value for the business version must be at least $30. This $30 has a name:
It is the business user’s information rent . The reason for the name is that the

Information rent:
The surplus that a
high-valuation user
captures under
2nd-degree price
discrimination.

information rent is what the manufacturer must “pay” the business user (more
generally, a high-value consumer) for the information that she is a business
user. In other words, the information rent is the cost of inducing revelation.

Hence, if the software manufacturer offers both version, with the home ver-
sion aimed at the casual user and the business version aimed at the business
user, then the profit-maximizing prices for the two are $50 and $110.

The other option available to the manufacturer is simply to offer one ver-
sion. If it does, which version? Well, given there is no additional cost to pro-
ducing the business version (core plus ancillary capabilities) over the home
version (core capabilities only) and both types of potential buyer value the busi-
ness version more, it should sell just the business version. If it chooses to sell
the business version only, what price should it charge? Well either $75 and sell
to everyone or $140 and sell to just business users.
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To summarize to this point. We’ve identified three options for the software
manufacturer as potentially being profit maximizing:

1. Sell a business version for $110 and a home version for $50.

2. Sell a business version only and do so at a price of $75.

3. Sell a business version only and do so at a price of $140.

Which option is best? The answer depends on r, the ratio of business to casual
users. Observe that the total number of potential buyers is proportional to 1+ r,
the number of casual users proportional to 1, and the number of business users
proportional to r. So the profits under the three option are proportional to

1. $50 + $110r.

2. $75(1+ r).

3. $140r.

The first option beats the second if $35r ≥ $25; that is, if r ≥ 5/7. The first
option beats the third if 50 ≥ $30r; that is, if r ≤ 5/3. The second beats the
third if $75 ≥ 65r; that is, if r ≤ 15/13. Putting all this together, we can
conclude:

Conclusion. If r < 5/7 (i.e., if there are fewer than 5 business users for each 7 casual
users), then the manufacturer should choose the second option, the business version at
a price of $75. If 5/7 ≤ r ≤ 5/3, then the manufacturer should choose the first option,
sell both versions at prices $110 for the business version and $50 for the home version.
Finally, if 5/3 < r, then the manufacturer should choose the third option, the business
version at a price of $140.

Although the discussion here has been tied to a specific example, the basic
principles should be clear:

• Discrimination via quality distortion means introducing a product that is
worse than the product that would offered were you not discriminating.

• If you offer multiple products, then high-valuation consumers—the ones
for whom the better products are intended—must get information rents
reflecting that the they need inducement not to buy the inferior products
that are priced so low-valuation consumers will buy them.

Quantity discounts

The fact that different size containers of the same good often cost different
amounts on a per-unit basis is well known. Typically, the larger the package,
the less it costs per-unit; that is, for example, the liter bottle of Pepsi typically
costs less than twice the price of the half-liter bottle of Pepsi. In this section
we consider why such quantity discounts can be an effective form of second-
degree price discrimination.
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price ($/unit)

units

c

qs q f

d f (p)ds(p)

R

A B

Figure 4.5: The individual demands of the two types of consumers (family and
single), d f (·) and ds(·), respectively, are shown.

A fully general treatment can get quite complicated, so here we will restrict
attention to a situation in which the firm has constant marginal cost, c.

Suppose the population of potential buyers is divided into families (in-
dexed by f ) and single people (indexed by s). Let d f (·) denote the demand

of an individual family and let ds(·) denote the demand of an individual single.
Figure 4.5 shows the two demands. Note that, at any price, a family’s demand
exceeds a single’s demand.

The ideal, from the firm’s perspective, would be the following. Suppose it
could freely identify singles from families. It would then offer two different
two-part tariffs (packages) to the two populations. It would make the per-unit
charge c and the entry fee the respective consumer surpluses. Equivalently—
and more practically—consider packaging. The package for singles would
have qs units and sell for a single’s total benefit, bs(qs). This is the area la-
beled A in Figure 4.5. Similarly, the family package would have q f units and

sell for a family’s total benefit of b f (q f ). This is the sum of the three labeled
areas in Figure 4.5.

The ideal is not, however, achievable. The firm cannot freely distinguish
singles from families. It must induce revelation; that is, it must devise a second-
degree scheme. Observe that the ideal scheme won’t work as a second-degree
scheme. Although a single would still purchase a package of qs units at bs(qs),
a family would not purchase a package of q f units at b f (q f ). Why? Well, were
the family to purchase the latter package it would, by design, earn no consumer
surplus. Suppose, instead, it purchased the package intended for singles. Its
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total benefit from doing so is the sum of areas A and R in Figure 4.5. It pays
bs(qs), which is just area A, so it would enjoy a surplus equal to area R. In other
words, the family would deviate from the intended package, with q f units,
which yields it no surplus, to the unintended package, with qs units, which
yields it a positive surplus equal to area R.

Observe that the firm could induce revelation—that is, get the family to buy
the intended package—if it cut the price of the q f -unit package. Specifically, if it
reduced the price to the sum of areas A and B, then a family would enjoy a sur-
plus equal to area R whether it purchased the qs-unit package (at price = area
A) or it purchased the intended q f -unit package (at price = area A + area B).
Area R is a family’s information rent.

Although that scheme induces revelation, it is not necessarily the profit-
maximizing scheme. To see why, consider Figure 4.6. Suppose that the firm
reduced the size of the package intended for singles. Specifically, suppose it
reduced it to q̂s units, where q̂s = qs − h. Given that it has shrunk the package,
it would need to reduce the price it charges for it. The benefit that a single
would derive from q̂s units is the area beneath its inverse demand curve be-
tween 0 and q̂s units; that is, the area labeled A′. Note that the firm is forgoing
revenues equal to area J by doing this. But the surplus that a family could get
by purchasing a q̂s-unit package is also smaller; it is now the area labeled R′.
This means that the firm could raise the price of the q f -unit package by the area
labeled H. Regardless of which package it purchases, a family can only obtain
surplus equal to area R′. In other words, by reducing the quantity sold to the
“low type” (a single), the firm reduces the information rent captured by the
“high type” (a family).

Is it worthwhile for the firm to trade area J for area H? Observe that the
profit represented by area J is rather modest: While selling the additional h
units to a single adds area J in revenue it also adds ch in cost. As drawn,
the profit from the additional h units is the small triangle at the top of area
J. In contrast, area H represents pure profit—regardless of how many units it
intends to sell to singles, the firm is selling q f units to each family (i.e., cq f is a
sunk expenditure with respect to the decision of how many units to sell each
single). So, as drawn, this looks like a very worthwhile trade for the firm to
make.

A caution, though: The figure only compares a single family against a single
single. What if there were lots of singles relative to families? Observe that the
total profit loss from reducing the package intended for singles by h is

(area J− ch)× Ns ,

where Ns is the number of singles in the population. The profit gain from
reducing that package is

area H × N f ,

where N f is the number of families. If Ns is much larger than N f , then this
reduction in package size is not worthwhile. On the other hand if the two
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price ($/unit)
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Figure 4.6: By reducing the quantity in the package intended for singles, the
firm loses revenue equal to area J, but gains revenue equal to area
H.

populations are roughly equal in size or N f is larger, then reducing the package
for singles by more than h could be optimal.

How do we determine the amount by which to reduce the package in-
tended for singles (i.e., the smaller package)? That is, how do we figure out
what h should be? As usual, the answer is that we fall back on our MR = MC
rule. Consider a small expansion of the smaller package from q̂s. Because we
are using an implicit two-part tariff (packaging) on the singles, the change in
revenue—that is, marginal revenue—is the change in a single’s benefit (i.e.,
mbs(q̂s)) times the number of singles. That is,

MR(q̂s) = Nsmbs(q̂s) .

Recall that the marginal benefit schedule is inverse demand. So if we let ρs(·)
denote the inverse individual demand of a single, then we can write

MR(q̂s) = Nsρs(q̂s) . (4.9)

What about MC? Well, if we increase the amount in the smaller package we
incur costs from two sources. First, each additional unit raises production costs
by c. Second, we increase each family’s information rent (i.e., area H shrinks).
Observe that area H is the area between the two demand curves (thus, between
the two inverse demand curves) between q̂s and q̂s + h. This means that the
marginal reduction in area H is

ρ f (q̂s)− ρs(q̂s) ,
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where ρ f (·) is the inverse demand of a family. Scaling by the appropriate pop-
ulation sizes and adding them together, we have

MC(q̂s) = Nsc + N f

(
ρ f (q̂s)− ρs(q̂s)

)
. (4.10)

Some observations:

1. Observe that if we evaluate expressions (4.9) and (4.10) at the qs shown
in Figure 4.5, we have

MR(qs) = Nsρs(qs) and

MC(qs) = Nsc + N f

(
ρ f (qs)− ρs(qs)

)
.

Subtract the second equation from the first:

MR(qs)− MC(qs) = Ns(ρs(qs)− c)− N f

(
ρ f (qs)− ρs(qs)

)

= −N f

(
ρ f (qs)− ρs(qs)

)

< 0 ,

where the second equality follows because, as seen in Figure 4.5, ρs(qs) =
c (i.e., qs is the quantity that equates inverse demand and marginal cost).
Hence, provided N f > 0, we see that the profit-maximizing second-
degree pricing scheme sells the low type (e.g., singles) less than the welfare-
maximizing quantity (i.e., there is a deadweight loss of area J − ch). In
other words, as we saw previously, there is distortion at the bottom.

2. How do we know we want the family package to have q f units? Well,
clearly we wouldn’t want it to have more—the marginal benefit we could
capture would be less than our marginal cost. If we reduced the package
size, we would be creating deadweight loss. Furthermore, because we
don’t have to worry about singles’ buying packages intended for fami-
lies (that incentive compatibility constraint is slack) we can’t gain by cre-
ating such a deadweight loss (unlike with the smaller package, where the
deadweight loss is offset by the reduction in the information rent enjoyed
by families). We can summarize this as there being no distortion at the
top.

3. Do we know that the profit-maximizing q̂s is positive? That is, do we
know that a solution to MR = MC exists in this situation? The answer is
no. It is possible, especially if there are a lot of families relative to singles,
that it might be profit-maximizing to set q̂s = 0; that is, sell only one
package, the q f -unit package, which only families buy. This will be the

case if MR(0) ≤ MC(0). In other words, if

Ns(ρs(0)− c)− N f

(
ρ f (0)− ρs(0)

)
≤ 0 (4.11)

4. On the other hand, it will often be the case that the profit-maximizing q̂s

is positive, in which case it will be determined by equating expressions
(4.9) and (4.10).
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Example 24: Consider a cell-phone-service provider. It faces two types of
customers, those who seldom have someone to talk to (indexed by s) and
those who frequently have someone to talked to (indexed by f ). Within
each type, customers are homogeneous. The marginal cost of providing
connection to a cell phone is 5 cents a minute (for convenience, all currency
units are cents). A member of the s-population has demand:

xs(p) =

{
450 − 10p , if p ≤ 45
0 , if p > 45

.

A member of the f -population has demand:

x f (p) =

{
650 − 10p , if p ≤ 65
0 , if p > 65

.

There are 1,000,000 f -type consumers. There are Ns s-type consumers.

What is the profit-maximizing second-degree pricing scheme to use?
How many minutes are in each package? What are the prices?

It is clear that the f types are the high types (like families in our pre-
vious analysis). There is no distortion at the top, so we know we sell an f
type the number of minutes that equates demand and marginal cost; that
is,

q∗f = x f (c) = 600 .

We need to find q∗s . To do this, we need to employ expressions (4.9) and
(4.10). They, in turn, require us to know ρs(·) and ρ f (·). Considering the
regions of positive demand, we have:

qs = 450 − 10ρs(qs) and

q f = 650 − 10ρ f (q f ) ;

hence,

ρs(qs) = 45 − qs

10
and

ρ f (q f ) = 65 −
q f

10
.

Using expression (4.9), marginal revenue from qs is, therefore,

MR(qs) = Nsρs(qs) = Ns ×
(

45 − qs

10

)

.

Marginal cost of qs (including forgone surplus extraction from the f type)
is

MC(qs) = Nsc + N f

(
ρ f (qs)− ρs(qs)

)

= 5Ns + 1, 000, 000

(

65 −
q f

10
− 45 +

q f

10

)

= 5Ns + 20, 000, 000 .
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Do we want to shut out the s-types altogether? Employing expression
(4.11), the answer is yes if

40Ns − 20, 000, 000 < 0 ;

that is, if Ns < 500, 000. When the s-types are shut out, the price for 600
minutes (i.e., q∗f ) is b f (600), which is

b f (600) = Area under ρ f (·) from 0 to 600

=
∫ 600

0
ρ f (z)dz

=
∫ 600

0

(

65 − z

10

)

dz

= 21, 000

cents or $210.

Suppose that Ns ≥ 500, 000. Then, equating MR and MC, we have

Ns ×
(

45 − qs

10

)

= 5Ns + 20, 000, 000 ;

hence,

q∗s = 400 − 200, 000, 000

Ns
.

The low type retains no surplus, so the price for q∗s minutes is bs(q∗s ), which
equals the area under ρs(·) from 0 to q∗s . This can be shown (see derivation
of b f (600) above) to be

bs(q
∗
s ) = Area under ρs(·) from 0 to q∗s

=
∫ q∗s

0

(

45 − q

10

)

dq

= 45q∗s −
q∗s

2

20
.

The price charged the f types for their 600 minutes is b f (600) less their

information rent, which is the equivalent of area R′ in Figure 4.6.

Area R′ =
∫ q∗s

0

(

65 − q

45
− 45 +

q

45

)

dq = 20q∗s .

So the price charged for 600 minutes is 21, 000 − 20q∗s cents ($210 − q∗s /5).

To conclude: If Ns < 500, 000, then the firm sells only a package with
600 minutes for $210. In this case, only f types buy. If Ns ≥ 500, 000, then
the firm sells a package with 600 minutes, purchased by the f types, for
210 − q∗s /5 dollars; and it also sells a package with q∗s minutes for a price
of bs(q∗s ) dollars. For example, if Ns = 5, 000, 000, then the two plans are (i)
600 minutes for $138; and (ii) 360 minutes for $97.20.
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Bundling 4.7
Often we see goods sold in packages. For instance, a CD often contains many
different songs. A restaurant may offer a prix fixe menu that combines an ap-
petizer, main course, and dessert. Theater companies, symphonies, and operas
may sell season tickets for a variety of different shows. Such packages are
called bundles and the practice of selling such packages is called bundling.

In some instances, the goods are available only in the bundle (e.g., it may be
impossible to buy songs individually). Sometimes the goods are also available
individually (e.g., the restaurant permits you to order à la carte). The former
case is called pure bundling, the latter case is called mixed bundling.

Why bundle? One answer is it can be a useful competitive strategy; for in-
stance, it is claimed that the advent of Microsoft Office, which bundled a word-
processor, spreadsheet program, database program, presentation program, etc.,
helped Microsoft “kill off” strong competitor products that werent bundled
(e.g., WordPerfect, Lotus , Harvard Graphics, etc.).

Another answer, and one relevant to this chapter, is that it can help price
discriminate. To see this, suppose a Shakespeare company will produce two
plays, a comedy and a tragedy, during a season. Type-C consumers tend to
prefer comedies and, thus, value the comedy at $40 and the tragedy at $30.
Hence, a type-C consumer will pay $70 for a season ticket (i.e., access to both
shows). Type-D consumers tend to prefer dramas and, thus, value the comedy
at $25 and the tragedy at $45. Hence, a type-D consumer will pay $70 for a
season ticket. Assume no capacity constraint (i.e., the shows dont sell out) and
a constant marginal cost, which we can take to be negligible; that is, MC = 0.
Let Nt denote the number of type-t theater goers.

If the company sold the shows separately, then its profit is

max{25(NC+ND), 40NC}
︸ ︷︷ ︸

profit from comedy

+max{30(NC+ND), 45ND}
︸ ︷︷ ︸

profit from tragedy

< 70(NC + ND) .

But if the theater company sold season tickets, it would get $70 from both types
and this, as just shown, would yield greater profit. This is an example in which
pure bundling does better than selling the goods separately.

For an example where mixed bundling is profit maximizing, change the
assumptions so that type-D consumers are now willing to pay only $20 for
the comedy. If NC > 4ND (i.e., type-C consumers are more than 80% of the
market), then the profit-maximizing solution is to sell season tickets for $70,
but now make the tragedy available separately for $45.

Observe how the negative correlation between preferences for comedy ver-
sus tragedy helps the theater company price discriminate. Effectively, this neg-
ative correlation can be exploited by the company to induce the two types to
reveal who they are for the purpose of price discrimination. It follows that
bundling is related to the forms of second-degree price discrimination consid-
ered earlier.
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Summary 4.8
In this chapter we explored price discrimination. Ideally, a firm would like
to capture all the gains to trade (welfare), which means leaving no profitable
trades unmade (no deadweight loss) and capturing all of the consumers sur-
plus. This ideal, which we called the “Holy Grail” of pricing, is known as
perfect or first-degree price discrimination.

If all consumers are identical, then perfect price discrimination can be achieved
by a two-part tariff. One part, the per-unit charge, is set so as to equate inverse
demand and marginal cost. The second part, the entry fee, is set equal to the
consumer surplus that each consumer would realize were he or she able to buy
as many units as he or she desired at that per-unit charge.

When consumers are not identical, then it is typically not possible to achieve
perfect discrimination.

We saw that two-part tariffs are often disguised. Sometimes they are dis-
guised because the per-unit charge is zero. Sometimes they are disguised through
packaging; consumers have a choice between buying nothing or a package of
fixed size, the price of which is set equal to a consumers total benefit from the
number of units in the package. Finally, metering is a way to execute a two-part
tariff (although there are also other reasons to use metering).

When consumers are heterogeneous it is sometimes possible to divide them
into different populations that are more homogeneous. If the firm can freely
identify the population to which a consumer belongs (his or her “type”), then
the firm can engage in third-degree price discrimination; that is, offer different
tariffs to different populations. In other circumstances, the firm cannot freely
identify consumers’ types. It can, however, induce them to reveal their types.
This form of price discrimination is known as second-degree price discrimi-
nation. Two prevalent forms of second-degree price discrimination are using
quality distortions and quantity discounts. In any second-degree price dis-
crimination scheme, the consumer type who values the good more (the “high
type”) is the one who must be induced to reveal his or her type. Because this
knowledge is valuable, the high-type consumer retains some of its value in
the form of an information rent. On the other hand, there is no distortion in
what is sold the high type (e.g., she gets the unrestricted ticket or the welfare-
maximizing quantity). The other type (the “low type”) doesn’t possess valu-
able information, so earns no information rent. Moreover, to reduce the rent
earned by the high type, what is sold to the low type is distorted; either he gets
a good of reduced quality or he gets less than the welfare-maximizing quantity
(so-called distortion at the bottom). In some cases, it pays to shut out the low
type altogether.

A final method of price discrimination explored was bundling. Bundling
allows the firm to take advantage of the correlations that exist between con-
sumers’ preferences for different products.

All discriminatory pricing is, in theory, vulnerable to arbitrage—the advan-
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taged reselling to the disadvantaged. We considered when arbitrage might
prevent the use of price discrimination and how firms might, in turn, seek to
deter or reduce arbitrage.



Game Theory 5
A tool that is of great use in analyzing strategic situations is game theory. Like
the tools considered in the previous chapter, game theory is not a substitute for
your thinking, but an aid to it.

What is game theory? At a technical level, game theory is a body of math-
ematical knowledge that has arisen to analyze strategic situations or “games.”
Its history dates back to the beginning of the last century, although aspects of
it can be glimpsed in work of the th century as well. As a field, game the-
ory can be a course in itself and there are many thick textbooks dedicated to
teaching it. Given this, we cannot expect to do complete justice to the field
in a single chapter; we will, instead, consider a few ideas that are particularly
useful in business strategy.

Introduction to Game Theory 5.1
Game theory seeks to help people make predictions about how people will
behave in strategic situations. Because the earliest strategic situations ana-
lyzed were games, such as chess, the field became known as game theory and
the strategic situations analyzed are called games. Hence, in a business con-
text, one might speak of entry games; that is, strategic decisions in which one
or more firms is considering entering a market and one or more incumbent
firms is considering how to deter entry. Another “game” might be a pricing
game—different firms in an industry face the strategic situation of what prices
to charge. The actors in such games (e.g., the firms in these two examples) are
called the players of the game. What the players receive at the end of the game
are known as their payoffs.

Let’s consider a game. Suppose there are two firms, Row Inc. and Col-
umn Co.—Row and Column for short. Each firm is contemplating whether
to advertise on local television. If neither firm advertises, then each firm’s
monthly profit—it’s payoff—will be $100,000. If one firm advertises, but the
other doesn’t, then the advertising firm will have profits of $125,000 once the
cost of advertising is taken into account; the non-advertising firm will have
profits of $50,000. If both firms advertise, then the advertising of one partially
cancels out the advertising of the other and vice versa; the profits of each, once
the costs of advertising are accounted for, will be $75,000. Figure 5.1 illustrates
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125
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100

Advertise No Advertising

Advertise

No Advertising

Row, Inc.

Column Co.

Figure 5.1: A game between Row, Inc. and Column Co. Payoffs are in hun-
dreds of thousands of dollars. In each cell, the payoff to Row, Inc.
is the number in the lower left-hand corner and the payoff to Col-
umn Co. is the number in the upper right-hand corner. Row, Inc.’s
possible strategies are the row headings and Column Co.’s are the
column headings.

in the form of a payoff matrix.1

Having specified the game, we wish to determine what will happen; what
strategies will the firms actually play? This is known as solving the game . To
do so, consider the situation from Row’s perspective. If Column will adver-
tise (i.e., will choose the left column of the matrix), then Row’s payoff will be
$75,000 if it also advertises, but only $50,000 if doesn’t. So, if Row believes
Column will advertise, Row does better to advertise as well. If Column won’t
advertise (i.e., will choose the right column of the matrix), then Row’s payoff
will be $125,000 if it advertises, but only $100,000 if it doesn’t. So, if Row be-
lieves Column won’t advertise, Row does better to advertise. Observe, there-
fore, that no matter what Row believes Column will do, Row does better to
advertise than not. Hence, that must be what Row does. In the terminology
of game theory, advertise is a dominant strategy for Row. More generally, a
strategy is dominant for a player if it is best for that player regardless of what
other players will do. What about Column? A similar analysis reveals that

Dominant
Strategy: A
strategy that is best
to play regardless of
the strategies
pursued by other
players.

advertise is a dominant strategy for Column (75 > 50 and 125 > 100). That
is, Column does better to advertise regardless of what it believes Row will do.
Hence, Column will advertise. So the solution of the game—the predicted out-
come of how these firms will play—is they will both choose to advertise and
each earn monthly profits of $75,000.

1The matrix in Figure 5.1 is technically the representation of the game in normal form .



5.1 Introduction to Game Theory 113

Observe that the outcome of this advertising game—both firms choose to
advertise—is not as desirable an outcome for the firms as if neither advertised.
In the latter outcome, both firms earn monthly profits of $100,000. But, as just
seen, competition leads them to both advertise. This illustrates an important
point: Competition between firms can lead to outcomes that the firms wouldn’t
see as desirable. The game in Figure 5.1 is an example of a common form of
game called the Prisoners’ Dilemma .2 Other examples of Prisoners’ Dilem-

Prisoners’
Dilemma: A game
in which playing
their dominant
strategies results in
an outcome the
players find
undesirable.

mas are arms races between two nations (advertise = build up arms) and “rat-
racing” between employees seeking to be the one promoted (advertise = work
many hours overtime).

Nash Equilibrium

We have seen that if a player has a dominant strategy, then he/she/it will play
it. Consequently, it is a straightforward matter to solve games in which all the
players have dominant strategies—the solution is they all play their dominant
strategies. But what if one or more players doesn’t have a dominant strategy?
To answer that, we need a more general method of solving games. Fortunately,
one exists, it is known as Nash equilibrium.3

To understand Nash equilibrium, we need first to understand the notion of �
a best response. A best response is the best strategy for you to play against a
particular set of strategies of your opponents that you think they will play. We
would say that strategy is the best response to that set of strategies. Note that the
name “best response” is a bit of a misnomer. You are not responding to what
other players actually do; instead, it is the best response to what you believe
they will do. To help illustrate this concept, consider Figure 5.2 a somewhat
arbitrary game between two players, Row and Column.

Observe, first, that neither player has a dominant strategy. If Row believes
Column will play Right, then Row does best to play either Up or Down; but if
Row believes Column will play Center, then Row does best to play Middle. So
there is no one strategy for Row that is best regardless of what Column will do.
Similarly for Column: if Column believes Row will play up, then Column does
best to play Left; but if Column believes Row will play Middle, then Column
does best to play Center. So there is no one strategy for Column that is best
regardless of what Row will do.

Now let’s find best responses. What is Row’s best response if it believes �
Column will play Left? The answer is Middle (9 > 6 and 9 > 8). If it believes
Column will play Center? Answer: Middle (10 > 9). If it believes Column will
play Right? Answer: Up or Down (12 > 11). Now consider Column. What is

2The reason for the name is that one of the earliest illustrations was in the fictional context of
two criminals who had been arrested. The prosecutor wants them to confess (the equivalent of
advertising in Figure 5.1). The players—the prisoners—do better not confessing (the equivalent of
not advertising). However, the prosecutor structures the players’ payoffs (the amount of time by
which their jail terms are reduced) so that confessing is a dominant strategy for both.

3Although some earlier work hinted at the concept of Nash equilibrium, this solution concept
is largely due to John Nash, hence the name.
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Figure 5.2: A game between Row and Column. In each cell, the payoff to
Row is the number in the lower left-hand corner and the payoff to
Column is the number in the upper right-hand corner. Row’s possi-
ble strategies are the row headings and Column’s are the column
headings.

Column’s best response if it believes Row will play Up? Answer: Left (12 > 9
and 12 > 8). If it believes Row will play Middle? Answer: Center (10 > 9). If
it believes Row will play Down? Answer: Left (12 > 11 and 12 > 6).

We are now in position to solve the game and define a Nash equilibrium. A�
Nash equilibrium is a situation in which all players are playing best responses
to the strategies they believe their opponents are playing and these beliefs are
all correct. That is, all players are correctly anticipating what their opponents
will do and all are playing accordingly. Observe, therefore, that to find a Nash
equilibrium of a game we need to find a set of strategies, one for each player,
such that these strategies are all best responses to each other; that is, a situation
of mutual best responses. What then is a Nash equilibrium of the game in Fig-

Nash Equilibrium:
A situation in which
all players are
playing best
responses to each
others’ strategies.

ure 5.2? We need to find mutual best responses. From the previous paragraph
we know:

Row’s Strategy
Column’s Best

Response

Row’s Best
Response to that
Best Response

Up Left Middle
Middle Center Middle
Down Left Middle

Because we are looking for mutual best responses, we know that a Nash equi-
librium will correspond to a row of the preceding table in which the first and
last entry of the row are the same. Consequently, we can conclude that the
Nash equilibrium of the game is that Row plays Middle and Column plays
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Figure 5.3: The game of Figure 5.2 with the dominated strategy Right “re-
moved.”

Center. In other words, we would predict that Middle-Center will be the out-
come of the game.

As a second example, recall the game of Figure 5.1. If a strategy is a domi-
nant strategy, then it is best against any particular strategies of the opponents;
that is, a best response to all strategies of the opponents. It follows, therefore,
that the Nash equilibrium of the Figure 5.1 game is for both firms to adver-
tise. This is a general result: A solution of game in which all players have dominant
strategies is a Nash equilibrium.

How do Nash equilibria come to be played? That is, how might players �
facing the Figure 5.2 game arrive at the Nash equilibrium? Presumably, they
engage in strategic thinking. Specifically, they put themselves in their oppo-
nent’s shoes and ask what they would do were they their opponent. For in-
stance, Row, putting herself in Column’s shoes, would recognize that no mat-
ter what Column thought she, Row, would do, Column would never wish to
play Right: His payoff from playing Right never exceeds what he would get
by playing Left or Center and is always less than playing one or the other or
both. In the terminology of game theory, Right is a dominated strategy. Play-
ers don’t play dominated strategies. Hence, Row would reason that Column
would never play Right. Hence, the game is effectively the game shown in
Figure 5.3. In this “pruned” game, Row would realize she has a dominant
strategy, namely Middle. So Row would conclude that she should always play
Middle. Column, likewise, would go through the same thinking and conclude
that Row would, thus, play Middle. Column’s best response to Middle is, as
shown before, Center; hence, Column would conclude he should play Center.
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The Bertrand Trap 5.2
Game-theoretic analysis and the notion of Nash equilibrium can be extended
to strategic situations in which the players make choices over essentially con-
tinuous variables, such as price. In particular, it is worth exploring a particu-
lar pricing game known as the Bertrand model; or, as I like to refer to it, the
Bertrand trap.4

The Six Conditions Underlying the Bertrand Model

The Bertrand model considers price competition among two or more firms
under the following six conditions:

Homogeneity: The good or service produced by the firms is identical in qual-
ity, image, and function across the firms; that is, customers perceive no
difference between the product of one firm and that of another.

Knowledge of price: Customers know the prices being charged by all the firms
prior to making purchasing decision.

No lock-in: Customers are not locked into any firm. They incur no costs if
they switch firms and they exhibit no firm loyalty.

Observe that these first three conditions imply that, because the only possible
differentiation between the firms are the prices they charge, customers will buy
from the firm charging the lowest price.

All Sales to
Lowest-Price Firm:
Customers buy from
the firm charging
the lowest price
under Bertrand
competition.

The last three conditions are:

Constant unit cost: All firms have the same constant unit cost; that is, no firm
has a cost advantage over any other and there are no economies of scale.

No capacity constraints: Any one firm can meet all demand; that is, no firm is
constrained by its capacity.

Myopic play: Firms do not consider their future interactions in making pric-
ing decisions today.

Not many markets are described by all six of these conditions, although a
few, such as commodity markets (e.g., the market for hard red winter wheat) or
those that involve bidding for large contracts (e.g., bidding to supply standard
parts to the military) come close. This, however, is okay, because the Bertrand
trap is largely a cautionary tale—a warning of what could happen or what
could go wrong if you don’t make good strategic decisions today.

4The Bertrand model was developed by the French mathematician Joseph Bertrand.
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Analysis of the Bertrand Model

To analyze the Bertrand model—solve the game—we need some notation. Let
c denote the constant unit cost; that is, c is some number of dollars per unit.
Let D(p) denote market demand (i.e., how much, in total, consumers wish to
purchase) if the price for a unit of the product is p. Note p is some number of
dollars per unit.

To make the analysis as straightforward as possible, let’s consider a duopoly.
Let the two firms in the duopoly be called A and B. Let d(pA) denote the de-
mand faced by A if its price is pA. Similarly, let d(pB) be B’s demand if its price
is pB. For the moment, let’s suppose A’s price is no greater than B’s. Recalling
that customers all go to the firm charging the lower price, if B’s price exceeds
A’s, then B’s demand is zero if its price exceeds A’s. In other words, if pB > pA,
then B makes no sales. Moreover, if pB > pA, then A makes all the sales. In
this case, note d(pA) = D(pA).

What if pB = pA? In this case, we may suppose that the firms divide the
demand at that common price between them, with neither firm getting all the
sales.5

What are the firms’ payoffs? Answer: their profits. Firm A’s profits are
d(pA)× (pA − c) and B’s are d(pB)× (pB − c). For example, suppose D(p) =
100− p, pA = 2, pB = 3, and c = 1, then A’s profit would be

d(pA)× (pA − c) = (100− 2)× (2 − 1) = 98 ,

where the final number is in dollars. B’s profit would be

d(pB)× (pB − c) = 0 × (3 − 1) = 0 .

To find the Nash equilibrium of this game, we need to find a pair of mutual
best responses. This entails determining what each firm’s best response is to
the possible pricing of the other. Given the symmetry between the firms, we
can look at just one firm’s best response to the other’s pricing. Let A be the one
firm. There are three cases to consider:

pB > c: If A prices above pB, it has no sales and, thus, zero profit. If it prices
below pB it captures the entire market and earns profit D(pA)× (pA − c).
Hence pA > pB cannot be a best response and among all the pA < pB,
the best is pA = pB − ε, where ε > 0 but exceedingly small. If it matches
B’s price, its profit is less than D(pB)(pB − c). By setting pA = pB − ε, A
captures the entire market with profits per sale approximately equal to
pB − c, which is better than it does by matching B’s price. Conclusion:
A’s best response is to undercut B’s price very slightly and capture the
entire market.

5To be precise, this assumption is not necessary. Because, however, it ensures symmetry be-
tween the firms, it helps to keep the exposition as straightforward as possible.



118 Chapter 5: Game Theory

pB < c: If A prices above pB, it has no sales and, thus, zero profit. If it prices at
or below pB it will lose money because price is below cost. Conclusion:
A’s best responses are all prices greater than B’s.

pB = c: If A prices at or above pB, it makes zero profit. If it prices below B it
captures the market, but loses money on every sale. Conclusion: A’s best
responses are all prices greater than or equal to B’s.

What then is a situation of mutual best responses? Answer pA = pB = c.
To see this, recall that if pB = c, then among A’s best responses is pA = c. By
symmetry, if pA = c, then among B’s best responses is pB = c. Moreover, there
are no other Nash equilibria: Given the analysis above, one or the other or both
firms are not playing a best response if it is (they are) pricing below cost. Nor
can it be an equilibrium for one of them to price above cost; either that firm
should drop price to undercut its rival or its rival should raise price to be just
below it.

Observe, then, that in the equilibrium of the Bertrand model both firms are
pricing at unit cost and, therefore, both firms are earning zero profits. Earn-
ing zero profits is an undesirable outcome, which is why I refer to this as the
Bertrand trap. Although this analysis was done for a duopoly, it readily ap-

Bertrand Trap:
Given the conditions
of the Bertrand
model, firms are
trapped earning
zero profits.

plies to an industry of any size (except, of course, a monopoly). In a market in
which the entire market can be captured by undercutting your rivals, the only
equilibrium price can be pricing at cost.

Avoiding the Bertrand Trap 5.3
The conclusion of the last section, namely that the outcome of Bertrand com-
petition is zero profits, is unavoidable if you find yourself engaged in Bertrand
competition. The only way to avoid the dire outcome of the Bertrand trap is
to avoid playing the Bertrand game in the first place. That is, like the Ghost of
Christmas Future in Dickens’s A Christmas Carol, the Bertrand model is a warn-
ing of what will happen to you unless you take steps today to change things.
What things should you change? Well, you need to make sure that one or more
of the conditions that underlie the Bertrand model aren’t met. This section
considers ways to change those conditions.

Differentiate Your Product

One factor that makes competition less fierce is the degree to which rivals’
products are differentiated. This suggests that one condition of the Bertrand
model that a firm might try to relax is the homogeneity of the products.

To see how product differentiation can help, assume customers are uni-�
formly distributed in their inherent preferences for the products of two com-
peting firms, named 0 and 1. Specifically, each consumer has a preference x,
where 0 ≤ x ≤ 1. Consumers also have a common intensity of preference,
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t ≥ 0, which can be interpreted as the degree of product differentiation (higher
t means greater differentiation). A consumer whose inherent preference is x
loses value tx if he buys from firm 0 and he loses value t(1− x) if he buys from
firm 1. Hence a consumer whose x = 0 is very partial to the product produced
by firm 0 and a consumer whose x = 1 is very partial to the product produced
by firm 1. A consumer whose x = 1/2 likes the two products equally well. If
there are N total customers, then there are N × X with a value of x ≤ X and
N × (1 − X) with a value of x ≥ X.

Each consumer buys at most one unit of the good in question. His value
for the good is v − tx − p if he buys it from firm 0 at price p (he doesn’t buy,
of course, if that quantity is negative) and v − t(1 − x) − p if he buys it from
firm 1 (again, he doesn’t buy if that quantity is negative).

What is each firm’s demand? To answer, we’ll limit attention to the case in
which v is relatively large. Let p0 be the price charged by firm 0 and p1 be the
price charged by firm 1. A consumer will buy from firm 0 if his payoff from
doing so exceeds his payoff from buying from firm 1; that is, he buys from
firm 0 if

v − tx − p0 > v − t(1 − x)− p1 .

He buys from firm 1 if the opposite holds; that is, he buys from firm 1 if

v − tx − p0 < v − t(1 − x)− p1 .

(Because we’ve limited attention to v large, we can ignore the case in which he
prefers to buy from neither.) Firm 0’s demand will be the number of consumers
for whom the first inequality holds and firm 1’s demand will be the number
of consumers for whom the second inequality holds. To determine these two
demands, we begin with consumers who are just indifferent between buying
from 0 or from 1; these are the consumers for whom

v − tx − p0 = v − t(1 − x)− p1 . (5.1)

Solving (5.1) for x, we find that consumers with x less than

t + p1 − p0

2t

buy from firm 0 and those with an x greater than that amount buy from firm 1.
If we call that amount X, then, from above, there are N × X customers with
x less than that amount and N × (1 − X) with x above that amount. Conse-
quently, firm 0’s demand, d0(p0), is

d0(p0) = N × t + p1 − p0

2t
=

Nt + N p1

2t
− N

2t
p0 .

Observe that demand is linear. Firm 1’s demand, d1(p1), is

d1(p1) = N ×
(

1 − t + p1 − p0

2t

)

=
Nt + N p0

2t
− N

2t
p1 .



120 Chapter 5: Game Theory

Observe it, too, is linear.
We need to solve this variation of the Bertrand game; that is, find the Nash

equilibrium. To do so, recall the discussion of pricing in Chapter 3. We know
that the profit-maximizing price—the best response given the price of the rival
firm—is the average of the choke price and unit cost, c. For firm 0, the choke
price is t + p1, so its best response to p1 is

p0 =
t + p1 + c

2
.

For firm 1, the choke price is t + p0, so its best response to p0 is

p1 =
t + p0 + c

2
.

Because we’re looking for a situation of mutual best responses, both these
equations must hold in equilibrium. Algebra will reveal that these equations
are both satisfied if

p0 = p1 = t + c . (5.2)

Observe, critically, that as long as there is differentiation (i.e., t > 0), price will
be greater than cost; differentiation has allowed the firms to avoid the Bertrand
trap!

This last point can also be made by calculating each firm’s profit in equilib-

Product
Differentiation: If
products are
differentiated, then
firms avoid the
Bertrand trap.

rium. Substituting the equilibrium prices (those given by expression (5.2)) into
the expressions for demand, we find that d0(p0) = d1(p1) = N/2. Each firm’s
profit is demand times the difference between price and unit cost; hence,

profit =
N

2
×
(
(t + c)− c

)
=

Nt

2
.

A firm’s profit is zero if there is no differentiation (i.e., t = 0) and positive if
there is. Moreover, for relevant values of the parameters, profit is increasing in
the degree of differentiation (i.e., increasing in t).

This analysis underscores our discussion of product differentiation in the
previous chapter. In particular, it shows why firms often work hard to differen-
tiate their products (either in reality or in terms of image). If everyone thought
all colas were the same, then price competition between Coke and Pepsi would
be fiercer than it is.

Suppressing Price Information

Another key condition of Bertrand competition is that customers know the
prices being charged by all firms. Suppose, instead, that customers had lim-
ited knowledge of prices.

To be concrete, assume there are two firms A and B. Half the potential
customers know the price being charged by A and half the price being charged
by B. At a cost of k > 0, a customer who knows the price being charged by
one firm can learn the price being charged by the other. The cost k can be
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considered the opportunity cost of the time required to call the other firm or
hunt up its web site, etc.

Consider a customer who knows the price at firm A, pA, but not the price
at firm B, pB. Although she doesn’t know the price at B, she holds some idea of
what it might be. In particular, she either believes it is sufficiently less than pA

to make incurring cost k to learn pB worthwhile (i.e., she believes pA − pB > k)
or she believes it’s not sufficiently less (i.e., she believes pA − pB ≤ k). If she
holds the former belief, she will learn B’s price and purchase from whichever
firm has the lower price. If she holds the latter belief, she will not learn B’s
price and she will purchase from A. A requirement of any equilibrium is that,
in equilibrium, her beliefs be correct.6

Our first result is that there is a Nash equilibrium in which both firms
charge the monopoly price. To see this, observe that if customers believe the two
firms are charging the same price, then they will never incur cost k to search
out prices. Consequently, those customers who know A’s price will buy from
A (if they buy at all) and those who know B’s price will buy from B (if they buy
at all). Consequently, each firm is “the only game in town” for the customers
who know its price. In other words, it is as if each firm is a monopolist vis-à-vis
half the customers. So each firm wishes to maximize

1

2
D(p)× (p − c) , (5.3)

given its demand at price p is 1
2 D(p) (half the market). Observe that the 1

2 in
expression (5.3) doesn’t affect what the profit-maximizing price is; in particular,
the profit-maximizing price will be the same as the price that maximizes

D(p)× (p − c) .

But that price is the price a monopolist would charge.
We need to verify that charging the monopoly price is the best response to

your rival charging the monopoly price in this game. If you charge more, then
your profits cannot be greater—either you keep all your customers, but are
charging too much, or you lose your customers. If you charge less, then, unlike
Bertrand competition, you don’t attract any of your rival’s customers—they
don’t know you’ve cut your price and, because they believe you won’t, they
don’t bother to check. So you have the same customers, but you’re charging
them less than the profit-maximizing price. We can conclude that, indeed, your
best response to your rival’s charging the monopoly price is for you, too, to
charge the monopoly price. The firms have avoided the Bertrand trap!

Price Ignorance: If
consumers find it
costly to acquire
knowledge of
prices, then firms
avoid the Bertrand
trap.

Moreover, this is the only possible equilibrium. To see this, note, first, that
there cannot be an equilibrium in which consumers learn price. If consumers
were to learn all prices, then the logic of Bertrand competition would drive the

6 OPT This requirement arises because a rational consumer understands the game being
played between the firms and anticipates what the equilibrium will be. Her beliefs about the
difference in prices must, then, accord with the equilibrium.
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firms to charge unit cost. But if they are charging the same price in “equilib-
rium,” then the consumers will rationally not incur cost k. So the only equilib-
ria must be those in which the consumers don’t learn prices. But then, as just
seen, each firm is a de facto monopoly and should, thus, charge the monopoly
price.

This analysis helps to explain why many retailers seek to make compari-
son shopping difficult. The less consumers know about prices, the less fierce
competition will be.

Lock-in Customers

As discussed in the previous chapter, one way to reduce the ferocity of compe-
tition is to lock-in customers. Although a complete analysis of lock-in requires
techniques beyond the scope of this text, an intuitive understanding of why
lock-in is effective can be seen from our earlier analysis of the Bertrand model.

Consider again two firms, A and B. Suppose half the potential customers
incur switching costs going from A to B (are locked in to A) and, likewise, half
incur switching costs going from B to A (are locked into B). Let the cost to a
consumer of switching firms be s > 0. This means that a customer locked into
A will only switch to B if B’s price, pB, is sufficiently less than A’s, pA, that it
is worth incurring the switching cost; that is, such a customer switches if and
only if pA − pB > s.

Recall the logic of Bertrand competition: In Bertrand competition, B can
steal all of A’s customers by just undercutting A’s price (i.e., by charging pA − ε,
where, recall, ε denotes an arbitrarily small positive amount). When, however,
there is a switching cost, B can’t just undercut A’s price by a little, it has, in-
stead, to undercut by at least s in order to steal customers from A. Consider a
situation in which the two firms are expected to charge the same price (greater
than unit cost). If B undercuts A by enough to steal any customers, it is also
lowering the price to those customers locked into it by s. Hence, on the one
hand, it gains, but on the other, it loses. Correspondingly, B will be less tempted
to undercut A when customers incur a switching cost than when they don’t.

Given the limited amount of game theory covered in this text, it is not possi-
ble to derive or even clearly state what the equilibrium is for this game. We can,
though, verify that whatever the equilibrium is, it entails firms pricing above
unit cost. To see this, we need merely show that pricing at unit cost is not a best
response to your rival’s pricing at unit cost; that is, show that pA = pB = c is
not a situation of mutual best responses (c recall denotes the unit cost). What
is the best response to your rival’s charging unit cost? Observe that you can
charge up to s more than your rival and not lose any customers. Because posi-
tive profit beat zero profit, your best response is, thus, some price p between c
and s + c (i.e., c < p < s + c). Observe it is not charging unit cost.

This analysis helps to explain why firms seek to raise consumers’ switching
costs. As discussed in the previous chapter, methods of doing so include the
use of loyalty programs (e.g., frequent-flier programs); making your product
incompatible with that of your rivals (e.g., only your printer cartridges fit into
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your printers); and causing consumers to incur a cost if they switch (e.g., as
was once the case when you switched mobile-phone service provider and had
to give up your existing phone number; or as would currently be the case if
you switched broadband service provider and had an email account through
your existing provider).

Obtain a Cost Advantage

Recall that the Bertrand model posited that the firms had identical unit costs.
What if one firm had a lower unit cost than others? As before consider two
firms, A and B, and suppose that A’s unit cost, cA, is less than B′s, cB. From
our earlier analysis of the Bertrand model, we know that there cannot be an
equilibrium in which either or both firms are charging a price above cB. We
also know that it is a dominated strategy for any firm to charge a price below
its cost—there is no way to make a profit if you’re pricing below cost. This tells
us that firm B cannot be charging above cB in equilibrium nor below it. The
conclusion is, thus, that it is charging cB. What about firm A? Observe it can
undercut B slightly, capture the entire market, and still make a profit because
cA < cB. The equilibrium is that B charges cB and A charges cB − ε (where,
again, ε is an arbitrarily small positive amount). We can conclude that having
a cost advantage over your rivals allows you to avoid the Bertrand trap.

Limit Capacity

One of the factors that makes a firm in the Bertrand model so eager to undercut
their rivals is that all demand comes to it and, moreover, it can handle all that
demand. But what if firms had limited capacity? That is, what if a given firm
couldn’t meet the demand of an entire market because it simply couldn’t pro-
duce that much in the requisite amount of time? Although a complete answer
requires techniques beyond the scope of this text, an intuitive understanding
of why limited capacity aids firms in avoiding the Bertrand trap can be seen
from our earlier analysis.

Similar to what we did in our discussion of lock-in, we’ll focus on why the
Bertrand equilibrium—all firms price at unit cost—cannot be an equilibrium
when there are binding capacity constraints. As before, consider two firms, A
and B. Suppose market demand at their common unit cost of c is D(c). As-
sume, however, neither firm can produce that much (although, perhaps, com-
bined they can). We need to show that pricing at unit cost is not a best response
to your rival’s pricing at unit cost. To see this, suppose B is pricing at unit cost
and its capacity is CB, where, as just assumed, CB < D(c). If A charges unit
cost, it makes no profit. Suppose A charged above unit cost. Although all cus-
tomers would prefer to buy from B, B can handle only CB of the demand. The
remaining D(c)− CB of demand is unmet and those customers will have no
choice but to turn to A. Consequently, A will make sales and at a price above
unit cost; hence, A will make a profit. A profit beats no profit, so we see that
pricing at unit cost is not a best response for A to B’s pricing at unit cost. Be-
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cause we don’t have a situation of mutual best responses, both firms pricing
at unit cost is not an equilibrium. Because pricing below cost is a dominated
strategy, we are left to conclude that the equilibrium, whatever it is, involves
the firms earning positive profits. In other words, by having limited capacity,

Limited Capacity:
By limiting capacity,
firms can avoid the
Bertrand trap.

the firms avoid the Bertrand trap.

This result helps to explain why fierce price competition often breaks out
in dying industries (industries for which demand is going away). Before their
industry was dying, firms in the industry had a healthy amount of capacity;
but not so much that they were in the Bertrand trap. As the industry dies
(i.e., demand shrinks), one or more firms in the industry become capable of
handling all the demand that remains. Price competition will get fiercer as a
consequence because the firms have fallen into the Bertrand trap.

Having a Long Horizon

The sixth condition that caused firms to fall into the Bertrand trap was that
they played myopically; that is, they did not take into consideration future play
among them. Not surprisingly, if firms ensure that condition doesn’t hold, they
will be able to avoid the Bertrand trap. Because the consequences of having a
long horizon on the play of games is a very important concept, with applica-
tions beyond the Bertrand model, we will devote the next section to it.

Repeated Interactions 5.4
Many strategic situations are repeated over time. For instance, setting prices
or advertising levels is something that Coke and Pepsi do repeatedly. The gas
station at one corner of a busy intersection competes day in and day out with
its rival across the street. Or, more mundanely, I interact with the same people
over and over again, as do you, albeit with a different set of people. As we
will see, strategic interactions are quite different when they are repeated over
time and players care about the future than when they are played only once or
players ignore the future.

To illustrate the power of repetition, let’s begin with a concrete example,
namely infinite repetition of the advertising game of Figure 5.1. (Why “infi-
nite”? you might ask; the answer and what we really mean by infinite will
become clear later in this section.) We refer to the game shown in Figure 5.1
as the stage game . Each period, the players play the stage game as shown and
receive the payoffs that correspond to the outcome of the stage game they play.
So, for instance, if, in the 12th period of play, Row advertises and Column does
not, then Row gets $125,000 in that period and Column gets $50,000 in that
period.
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A Review of Discounting and Present Value

Because players are getting paid over time, we need to discount payoffs that will
be received in the future. Starting in any given period, the players value the
payoffs of that period at face value, but they discount future periods’ payoffs.
Recall from basic finance if r is the interest rate across periods, then a payment
of x dollars to be received one period in the future has a present value of

x

1 + r

dollars. That is, x dollars to be paid one period in the future is worth the same
as

x

1 + r

dollars paid today. So for example, if x = 11 and r = .1 (i.e., the interest rate
is 10%), then we see that the promise of $11 in one period’s time is worth $10
today (= $11/1.1).

If a payoff, x, is to be received two periods hence, then it’s present value is

x

(1 + r)2
.

This is can be seen as follows. Suppose we were living one period hence, then
the promised future payoff would,then, be only one period hence and, thus,
worth

x

1 + r

one period forward from today. What’s the value today of receiving x/(1 + r)
in the next period? It’s

x
1+r

1 + r
=

x

(1 + r)2

using the logic of the previous paragraph. We can repeat this logic as many
times as necessary; hence, we can conclude that the present value of x to be
received t periods in the future is

x

(1 + r)t
.

Suppose you will receive a sequence of payoffs, x0, x1, x2, . . . , forever,
where xt is the payoff received t periods in the future (hence, x0 is the pay-
off received today). What is the present value of this sequence? It is the sum of
the present values of the individual payoffs. Since the present value of xt is

xt

(1 + r)t
,

that sum is

x0 +
x1

1 + r
+

x2

(1 + r)2
+ · · ·+ xt

(1 + r)t
+ · · · = x0 +

∞

∑
t=1

xt

(1 + r)t
,
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where, recall, the notation ∑
∞
t=1 means the sum of the terms from the 1st to the

“infinity-th.”
Now suppose that all the x’s in the sequence of payoffs are the same, just x.

Then this last formula becomes

x +
∞

∑
t=1

x

(1 + r)t
= x + x

∞

∑
t=1

1

(1 + r)t

(recall the distributive rule lets us pull a common term out of a sum). As you
recall from basic finance, the sum in the last expression is equal to 1/r; that is,7

∞

∑
t=1

1

(1 + r)t
=

1

r
.

Consequently, the present value of receiving x each period forever, starting
today, is given by

x +
x

r
. (5.4)

Note that x/r is the present value of receiving x each period forever, starting
tomorrow.

Obtaining Cooperation in a Prisoners’ Dilemma Game

Now let’s return to game theory and the game in Figure 5.1. What the play-
ers in this game would like to do is achieve the cooperative outcome , which
is neither player advertises and both get a payoff of $100,000. We saw above
that, if they play just once (or are myopic), then they fail to achieve the cooper-
ative outcome; instead, both players play their dominant strategy of advertise,
leading them to an undesirable outcome in which each gets a payoff of $75,000.

But what if the game were repeated infinitely and the players weren’t my-
opic? In this case, observe it is feasible for one player to “punish” another for
advertising through that player’s future play. In particular, if one of the players

7 OPT To derive this, it will prove convenient to let δ = 1/(1+ r). So the value of the sum, call
it S, is given by

S =
∞

∑
t=1

δt . (♠)

Multiply both sides by δ, which yields

δS =
∞

∑
t=1

δt+1 =
∞

∑
t=2

δt . (♣)

Subtracting (♣) from (♠) yields
S − δS = δ .

Hence,

S =
δ

1 − δ
=

1
1+r

1 − 1
1+r

=
1

1+r
1+r−1

1+r

=
1

r
.
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deviates from the cooperative outcome (i.e., advertises), then the other player
punishes the first by refusing to cooperate in the future.

How, formally, does this work? Consider the following, two-part strategy: �
1. Provided no player has ever advertised in the past or it is the first period,

then do not advertise.

2. If a player has ever advertised in the past, then advertise.

Observe that if both players adhere to it, then they are seeking to sustain co-
operation (not advertising) by the threat of reverting to non-cooperative play
(advertising). Recalling the concept of Nash equilibrium, both players will
adhere to this strategy if playing this strategy is a best response to the other
player’s playing it; that is, if they represent mutual best responses. Do they?
To answer this, we need to know what a player gets by adhering to the strategy
and what the player would get by deviating. If a player adheres, then, because
this player is anticipating the other will adhere, this player anticipates getting
$100,000 every period. From expression (5.4), this has a present value of

$100, 000+
$100, 000

r
= value of adhering .

If a player deviates (i.e., advertises), then, because this player is anticipating
the other will adhere, this player anticipates getting $125,000 this period (this
player has advertised, while the other has not); but, in future periods, this
player will only get $75,000 per period—the payoff if they revert to advertising
in every future period. From our review of present value, we know this stream
of payoffs has a present value of

$125, 000+
$75, 000

r
= value of deviating .

Adhering is a best response to adherence if and only if the value of adhering
exceeds the value of deviating; that is, if and only if

$100, 000+
$100, 000

r
≥ $125, 000+

$75, 000

r
,

which is equivalent to

$25, 000

r
≥ $25, 000 , (5.5)

which must hold provided the interest rate doesn’t exceed 100% (i.e., r ≤ 1).

Value of a Long
Horizon: Infinitely
repeated play can
allow the players to
achieve better
outcomes than they
could if the stage
game were played
just once.

Myopic play—not caring about the future—can be viewed as equivalent
to there being an infinite interest rate. If the interest rate were infinite, then
expression (5.5) wouldn’t hold, so cooperation wouldn’t be possible; precisely
the same conclusion we obtained analyzing the stage game back in Section 5.1.

One question you might have is whether a player would actually follow
through on part 2 of this strategy; that is, would a player revert to advertising
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every period in order to punish a rival player who advertised? The answer is
yes. To see why, observe that if you think your rival is going to advertise—and
do so regardless of what you do—then your best response (indeed, dominant
strategy) is to advertise too.

Avoiding the Bertrand Trap Through Repetition

Let’s now employ our knowledge of repeated games to see how having a long
horizon can help firms avoid the Bertrand trap. Assume all of the conditions—
except myopic play—of the Bertrand model apply. We’ll consider a situation
with F firms, F ≥ 2. Assume that if the F firms are all charging the same price,
then each firm gets 1/Fth of demand at that price.

Our goal, similar to that of the previous subsection, is to see whether the
firms can sustain a cooperative outcome. What would be the cooperative out-
come in this situation? It would be for all firms to charge the price a monopoly
firm would. Call that price p∗. Observe that, in the cooperative outcome, each
firm would get

1

F
D(p∗)× (p∗ − c) =

π∗

F
,

where, as before, D(p∗) denotes the market demand at price p∗ and c is the
constant unit cost. Observe, too, the implicit definition of π∗,

π∗ = D(p∗)× (p∗ − c) ;

the quantity π∗ is the profit a monopoly firm would make in this market.
As we did in the previous subsection, consider a two-part strategy:�

1. Provided no firm has ever set its price below the monopoly price, p∗, in
the past or it is the first period, then set price at p∗.

2. If a firm has ever set its price below p∗ in the past, then set price at unit
cost, c.

Would all firms following this strategy constitute a Nash equilibrium? That
is, is this strategy a best response to itself being played by F − 1 other firms?
To answer this, we need to know what a firm gets by adhering to the strategy
and what it would get by deviating. If a firm adheres, then, because this firm
anticipates its F − 1 rivals will adhere, this firm anticipates getting π∗/F every
period. From expression (5.4), this has a present value of

π∗

F
+

π∗/F

r
= value of adhering .

If a firm chooses to deviate, what would be its best deviation? Answer, pricing
just below p∗ and stealing the entire market. Because its price is just below p∗,
its profit is arbitrarily close to the monopoly profit, π∗. In fact, it is sufficiently
close that we can treat its payoff if it deviates as π∗. However, in all subsequent
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periods, its profit will be zero because firms are pricing at unit cost. The present
value of this stream of payoffs is, therefore,

π∗ +
0

r
= π∗ = value of deviating .

Adhering is a best response to adherence if and only if the value of adhering
exceeds the value of deviating; that is, if and only if

π∗

F
+

π∗/F

r
≥ π∗ ,

which, multiplying both sides by F/π∗, will be true if and only if

1 +
1

r
≥ F ,

which, doing a bit of algebra, is equivalent to

1

r
≥ F − 1 . (5.6)

If F = 2 (i.e., it’s a situation of duopoly), then expression (5.6) will hold true
provided the interest rate does not exceed 100%. If F = 3, then that expres-
sion holds true if the interest rate does not exceed 50%. More generally, that
expression holds true if

1

F − 1
≥ r . (5.7)

From expression (5.7), we see that the more firms there are in the industry, the
smaller the range of possible interest rates for which the firms can sustain the
cooperative outcome . In other words, the more firms there are in the industry,
the less likely it is that they will be able to sustain the cooperative outcome. If
they can’t sustain the cooperative outcome, then they are stuck in the Bertrand
trap. Observe that this result helps to justify why competition is generally less

Effect of Number
of Firms: The more
firms in an industry,
the more likely it is
that the firms will
find themselves
stuck in the
Bertrand trap (i.e.,
making zero profit).

fierce in more concentrated industries (i.e., fewer firms makes it more likely the
firms will avoid the Bertrand trap).

Why Infinite Repetition?

One question that you might have is why the focus on infinitely repeated games?
What about games that are repeated a fixed number of periods?

The answer is that if any of the games we’ve considered is repeated a fixed
number of times, then the only equilibrium is repetition of the equilibrium of
the stage game. Why is this? The answer can be seen by recalling that what
made players cooperate today was the threat of reverting to a bad outcome
tomorrow if players failed to cooperate today. But if there is no tomorrow, then
there is no threat, and, hence, no cooperation.
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To be slightly more rigorous, consider the last period of play. For a game �
such as the advertising game of Figure 5.1, the players will clearly play their
dominant strategies—that is, both will advertise—because it’s impossible for
the to suffer any future repercussions from having done so. Now consider the
players’ thinking in the period before the last, the penultimate period. Each
player knows that both players will play their dominant strategies in the last
period no matter what happens today. Hence, there are no repercussions for not
cooperating in the penultimate period either, which means the players will
play their dominant strategies (i.e., both will advertise). This “unraveling” ar-
gument works all the way back to the first period; knowing that, in all subse-
quent periods, the players will play their dominant strategies, there can be no
motive not to play your dominate strategy today.

The same reasoning applies to Bertrand competition that is repeated only

Known Game End:
If players know
precisely when the
game will end, then
it is not possible to
sustain cooperative
play.

a fixed number of times. In the last period, with no future periods to induce
cooperative behavior, the firms will be in the Bertrand trap and, thus, all price
at unit cost. In the penultimate period, recognizing that no matter what is done
today, they will all price at unit cost tomorrow, there is nothing to deter firms
from undercutting their rivals on price; but if there is nothing deterring them
from doing so, then the logic of the Bertrand trap dictates that they will end up
pricing at unit cost. Again, this unraveling argument works all the way back
to the first period.

What Do We Really Mean by Infinite?

At this point, you might object by noting that nothing lasts forever. People die.
Firms go out of business. At some point, life on Earth will become impossible.8

Even if humans somehow escape the Earth’s fate, most cosmological theories
hold that the Universe itself has only a finite life. Given all this, what do we
mean by an infinitely repeated game?

Obviously, we can’t mean literally infinitely repeated. But if so, then don’t
the arguments from the previous subsection rule out any cooperation? The
answer is no, the reason being that the unraveling argument given above relied
on the players knowing when the game would end; that is, what would be the
last period. In many situations, the players don’t know when the game will
end. How does this help? Well as long as the players think there is a chance
the game will continue to the next period, to the period after that, and so forth,
there is a future to deter the players from acting uncooperatively today.

To be more rigorous, suppose that, conditional on reaching any given pe-�
riod, the probability of playing the stage game again in the next period is β > 0.
Because β is a probability, β ≤ 1. If β = 1, then the game literally lasts forever,
so we’re interested in β < 1. What’s the value today of receiving x next period
if the probability of there being a next period is β? Well, if we were certain to

8The time remaining for life on this planet is unknown. But because the Sun is becoming in-
creasingly hotter, calculations suggest that surface water will be gone from our planet in one billion
years. Five billion years from now, the Sun will become a red giant and scorch the Earth.
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get x, it would be
x

1 + r
.

But if we’re uncertain—as we are because β < 1—then we have to multiply
that amount by the probability we get it; that is, not only do we need to dis-
count for the time until payment, but also for the uncertainty of payment. So, x
in one period’s time when there is only a probability of β of there being a next
period is worth, today,

xβ

1 + r
.

What about if x is to be paid us in two periods? We know the present value is

x

(1 + r)2
,

but again we need to discount for the uncertainty of payment. What’s the prob-
ability of there being a period two periods hence? Well, its probability β one
period hence and probability β one period hence after that, so the probability
of a period two periods hence is β × β = β2. So the value discounted for both
time and uncertainty—the expected present value—is

xβ2

(1 + r)2
.

Generalizing, the expected present value of x t periods hence is

xβt

(1 + r)t
= x

(
β

1 + r

)t

. (5.8)

In essence, rather than the discount factor being 1/(1 + r) it is β/(1 + r). Let’s
define the risk-adjusted interest rate , ρ, by the expression

1

1 + ρ
=

β

1 + r
,

which, following some algebraic manipulation, tells us

ρ =
1 + r

β
− 1 . (5.9)

Suppose that we are to receive x every period starting today and every period
until the game ends. What is the expected present value of that stream? Using
expression (5.8) and the definition of ρ, it is

x +
∞

∑
t=1

x

(
β

1 + r

)t

= x + x
∞

∑
t=1

1

(1 + ρ)t
= x +

x

ρ
. (5.10)

Observe if payments started tomorrow (one period hence), then the expected
present value would be x/ρ. The punchline to all this is that, by calculating the
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risk-adjusted interest rate, we can simply repeat all the analysis we did in the
previous subsections using ρ rather than r.

A couple of further points. One, observe that the probability of the game
lasting forever is zero. To see this, recall that the probability of it lasting t
periods into the future is βt. Because β < 1, βt is shrinking in t. Indeed, as
t goes towards infinity, βt is going to zero; that is, there is zero probability of
the game lasting forever. For example, suppose β = .9. Then the probability
of the game lasting 10 periods is .35; the probability of it lasting 100 periods
is .000027; and the probability of it lasting 1000 periods is 1.74 × 10−46. That
last probability is on the order of the probability that if we picked one atom
randomly from all the atoms on Earth that atom would just happen to be one
of the atoms making up your nose; in other words, essentially zero.

The second point is to recall that if the interest rate is too high, then it is
not feasible to sustain cooperative play. From expression (5.9), observe that
as β gets smaller—that is, the probability of the game surviving goes down—
then ρ gets bigger. In other words, the smaller the probability of the game
surviving, the harder it is to sustain cooperative play. This helps explain why
price competition can be particularly fierce in dying industries: Because the
probability of the game surviving far into the future is so low, the risk-adjusted
interest rate is extremely high (the future is heavily discounted), and, thus,
cooperation is hard to sustain.

Repeated Play in Everyday Life

There are many reasons people cooperate or behave nicely, but one of the more
important reasons is that they know they are playing a repeated game with
an unknown end date. The importance of this should not be underestimated.
Some everyday examples:

Paying bills. Firms are, of course, legally required to pay their bills. But they
have considerable discretion in how promptly they pay. Hence, in real life the
following often occurs. One firm—call it A—owes another firm—call it B, but
A knows B may soon go out of business. Hence, the importance A places on
maintaining a good relation with B is reduced (i.e., in the terms of the previous
analysis, ρ is high). Hence, A will tend to delay paying its bills or make B press
it to pay; that is, A will cease cooperating with B.

The lame-duck problem. Your coworkers’ incentives to cooperate with you
are greater when they think they will be interacting with you in the future than
when they know they won’t. Studies find, therefore, that people have a harder
time on the job once they’ve announced they’re leaving soon. In particular,
managers are often advised not to give their subordinates too much advanced
notice of their departure; subordinates work hard for a manager, in part, be-
cause they anticipate future interactions.
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A tough reputation. Sometimes repeated play allows you to develop a repu-
tation for being tough in the following sense. The possibility of future inter-
actions makes it credible that you’ll carry out actions in the stage game that
wouldn’t actually be in your interest were the stage game played just once, but
which, if others thought you would carry them out, would make others play
in a manner more to your liking. For example, certain countries try to develop
a reputation for never negotiating with hostage takers (e.g., terrorists). If there
were only, ever, going to be one hostage-taking situation, then it would be bet-
ter to negotiate than not. But knowing that, terrorists will be tempted to seize
hostages to achieve their objectives through subsequent negotiations. On the
other hand, if potential hostage-taking situations are likely in the future, then
by not negotiating today, you discourage future would-be hostage takers from
seizing hostages. In business, firms may seek to develop a reputation for being
tough competitors to deter potential entrants from coming into their markets;
it might not make sense to beat up on an entrant if the stage game were played
once, but if it deters future entrants, then it could be a sensible strategy.

Summary 5.5
This chapter introduced game theory as a tool to assess strategic situations.
Although we have only scratched the surface of what game theory can offer in
terms of understanding strategic interactions, we nevertheless saw that it could
help us predict how others will play and how we should play in response.

We analyzed two games in depth, the Prisoners’ Dilemma (the advertising
game of Figure 5.1) and the Bertrand Model. The first of the two introduced
the concept of dominant strategy. We also saw in that game that strategic in-
teractions could yield outcomes unfavorable to both players.

To properly analyze the Bertrand Model, a pricing game, we needed to in-
troduce the concept of Nash equilibrium; that is, players playing mutual best
responses. Like the Prisoners’ Dilemma, the outcome of the Bertrand Model
was unfavorable to the players. For this reason, we dubbed it the Bertrand
Trap.

We also noted that there were ways firms could avoid the Bertrand Trap: (i)
differentiate their products; (ii) make it difficult for consumers to learn prices;
(iii) raise switching costs; (iv) limit capacity; (v) obtain a cost advantage; or (vi)
exploit their repeated interactions.

The last of these, repeated interactions, we showed was a powerful concept
and could promote cooperative play in otherwise non-cooperative situations.

Key Concepts

• Elements of a game (players, actions, & payoffs)

• Dominant strategy
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• Prisoners’ Dilemma

• Best response

• Nash equilibrium

• Dominated strategy

• Bertrand model

• Avoiding the Bertrand trap

• Repeated games

• Stage game

• Infinite versus finite repetition (unknown versus known end of game)
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Algebra Review A1
This appendix reviews those aspects of algebra useful for successful comple-
tion of a course in managerial economics.

Functions A1.1
We begin with a quick review of functions.

Definition. A function takes each element of one set of numbers and maps it to a
unique number in a second set of numbers.

For example, the function f (x) = 5x + 3 takes real numbers and maps them
into real numbers. For instance, f (1) = 8; that is, the function maps 1 into 8.
Likewise f (3) = 18. Note that for any x, f (x) is unique (e.g., there is only one
value for f (4), namely 23).

The set of numbers that can serve as an argument for a function—that is,
the set of numbers for which the function is defined—is known as the domain
of the function. The set of numbers to which this set is mapped is known
as the range of the function. For example, because square root is defined for
non-negative numbers only, the function g(x) =

√
x has a domain equal to

{x|0 ≤ x < ∞} (i.e., the set of numbers between 0 and infinity). Because,
as discussed below,

√
x ≥ 0 for all x in the domain of square root, we see

that its range is also the set of non-negative numbers. As another example,
the function h(x) = |x| has a domain equal to all real numbers and range
consisting of all non-negative numbers.1

As a convention, f (·) denotes the function and f (x) denotes the particular
value of the function evaluated at x.

Although f (x) is a unique value, there is no guarantee that there is a unique
x that solves the equation f (x) = y because more than one element of the
domain can map to a single element of the range. For instance, |5| = | − 5| = 5.
So, if we define h(x) = |x|, then there is no single x that solves the equation
h(x) = 5. In some cases, however, there is always a unique x that solves the
equation f (x) = y. For instance, if f (x) = 5x + 3, then there is only one x
for each y, namely x = (y3)/5. When there is always a unique x that solves
f (x) = y for all y, we say that f (·) is an invertible function. Sometimes we just

1Recall that |x| denotes the absolute value of x. That is, |x| = x if x ≥ 0 and |x| = −x if x < 0
(e.g., |5| = 5 and | − 4| = 4).
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y

x

f (x)

g(x)

x̂

Figure A1.1: The function f (·) (in black) is continuous. The function g(·) (in
red) is not—it has a jump (point of discontinuity) at x̂.

say its “invertible.” The standard notation for the inverse mapping is f−1(·).
So, for example, if f (x) = 5x + 3, then f−1(y) = (y3)/5. Observe that the
following rule holds for functions and their inverses:

Rule 1. For an invertible function f (·), f
(

f−1(y)
)
= y and f−1

(
f (x)

)
= x.

A function, f (·), is increasing if, for all x0 and x1 in its domain, x1 > x0

implies f (x1) > f (x0). A function is decreasing if, for all x0 and x1 in its do-
main, x1 > x0 implies f (x1) < f (x0). Following the graph of a function from
left to right, it is increasing if its graph goes up. It is decreasing if its graph
goes down. The term monotonic will be used to refer to a function that is ei-
ther an increasing function or a decreasing function. Observe that a monotonic
function must be invertible.

Rule 2. Monotonic functions are invertible.

A function is continuous if you can draw its graph without picking up your
pen or pencil. See Figure A1.1. Technically, for any x̂ in the domain of the�
function f (·) if we fix a ε > 0 (but as small as we like), then there exists a δ > 0
such that

| f (x)− f (x̂)| < ε if |x − x̂| < δ .

Basically, this says that the graph can’t jump at x̂
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Exponents A1.2
Let n be a whole number (i.e., n = 0 or 1 or 2 . . . ).2 Let x be a real number. The
expression xn is shorthand for multiplying x n-times by itself; that is,

xn = x × · · · × x
︸ ︷︷ ︸

n times

.

Note the convention that x0 = 1 for all x. The n in xn is the exponent . Some-
times xn is described in words as “taking x to the nth power.”

Addition and multiplication of exponents

One rule of exponents is

Rule 3. xn × xm = xn+m.

For example, 22 × 23 = 22+3 = 25. (As is readily verified: 22 = 4, 23 = 8,
4 × 8 = 32,and 25 = 32.) Rule 3 is readily verified:

xn × xm = x × · · · × x
︸ ︷︷ ︸

n times

× x × · · · × x
︸ ︷︷ ︸

m times

= x × · · · × x
︸ ︷︷ ︸

n+m times

= xn+m .

A second rule of exponents is

Rule 4. (xn)m = xn×m = xnm.

Observe the convention that the multiplication of two variables (e.g., n and
m) can be expressed as nm. As an example, (22)3 = 26. (As is readily seen:

2Actually, one does not need to limit n to the whole numbers; it is certainly valid to let n be any

real number. That is, for instance, x1/2 is a valid expression (it is the same as
√

x). Even xπ is a
valid expression. When, however, n is not a whole number, the interpretation of xn is somewhat
more involved. It is worth noting, however, that all the rules set forth in this section apply even if
n is not a whole number.
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22 = 4, 43 = 64, and 26 = 64.) Rule 4 is readily verified:

(xn)m = xn × · · · × xn
︸ ︷︷ ︸

m times

= x × · · · × x
︸ ︷︷ ︸

n times

× · · · × x × · · · × x
︸ ︷︷ ︸

n times
︸ ︷︷ ︸

m times

= x × · · · × x
︸ ︷︷ ︸

n×m times

= xnm .

The rules for adding and multiplying exponents obey the usual rules of
arithmetic; hence, for instance:

Rule 5. xn+m = xnxm = xmxn = xm+n

Rule 6. xnm = xmn, so (xn)m = (xm)n.

Rule 7. (xy)n = xnyn.

Rule 8. (xnym)p = xnpymp.

Rule 9. xp(n+m) = (xn+m)
p
= (xnxm)p = xnpxmp = xnp+mp.

Rule 10 (Rule of the common exponent I). zpxnyn = zp(xy)n.

Rule 11 (Rule of the common exponent II). zp+nxn = zp(zx)n.

Rule 12 (Rule of the common exponent III). zpnxn = (zpx)n.

Errors to be avoided

The following are common mistakes to be avoided:

No no 1. (x + y)n 6= xn + yn; that is, exponentiation is not distributive over addi-
tion. For example, (2 + 3)2 = 52 = 25, whereas 22 + 32 = 4 + 9 = 13.

No no 2. xpnyn 6= xp(xy)n. For example, 26 × 32 = 23×232 = 64 × 9 = 576,
whereas 23(2 × 3)2 = 8 × 36 = 288. (Also recall Rule 12.)

Negative exponents

The notation x−n means (1/x)n (obviously, x 6= 0). Observe that, because

xnx−n = xn

(
1

x

)n

=

(

x × 1

x

)n

= 1n = 1 = x0
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(where the third inequality follows from Rule 8), we have that x−n is the mul-
tiplicative inverse of xn. It is also true that

xn × 1

xn
= 1 .

Because multiplicative inverses are unique, this means

Rule 13. (1/x)n = 1/xn.

All of the rules considered so far for exponents remain true with negative
exponents (as long as the numbers being raised to the negative exponents are
not zero).

It is readily seen that

Rule 14. (x/y)n = (y/x)−n.

Observe

(x + y)−n =
1

(x + y)n

not
1

xn
+

1

yn
;

that is,

No no 3. Observe

(x + y)−n 6= 1

xn
+

1

yn
.

For example, (2 + 3)−2 = 5−2 = 1/25, whereas 1/22 + 1/32 = 1/4 + 1/9 =
13/36.

Square Roots A1.3
The positive square root of a number x ≥ 0 is denoted

√
x; that is,

√
x is the

positive number such that
√

x ×√
x = x. Observe the convention that

√
x ≥ 0

(and equal to zero only if x = 0).
Because the product of two negative numbers is positive (e.g., −2× (−2) =

4), each number x ≥ 0 also has a negative square root. It is denoted −√
x.

Hence, as an example, the positive square root of 3 is denoted
√

3 and the

negative square root of 3 is denotes −
√

3.

Rules for square roots

By definition

Rule 15.
(√

x
)2

= x and
√

x2 = |x|. That is, squaring and taking square roots are
inverse operations.
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Also by definition, the square root of xy is
√

xy. Observe, too,

(√
x
√

y
)2

=
(√

x
√

y
) (√

x
√

y
)
=

√
x
√

x
√

y
√

y = xy ,

where the second equality follows because multiplication is associative (i.e., we
are free to rearrange the order of the terms). But this says, then, that

√
x
√

y is
also the square root of xy; we may conclude:

Rule 16.
√

xy =
√

x
√

y.

This rule is useful for simplifying expressions. For instance,
√

8 =
√

4 × 2 =√
4
√

2 = 2
√

2.
The following is a common mistake to avoid:

No no 4.
√

x + y 6= √
x +

√
y; that is, taking square roots is not distributive over

addition. For example,
√

9 + 16 =
√

25 = 5, whereas
√

9 +
√

16 = 3 + 4 = 7.

Recall that the sum of the lengths of any two sides of a triangle must exceed
the length of the remaining side. For this reason, this last “no no” is sometimes
called the triangle inequality (can you see why?) and stated as

Theorem 1 (Triangle Inequality).
√

x + y ≤ √
x +

√
y and equal only if x or y or

both is (are) zero.

Equations of the Form
ax2 + bx + c = 0 A1.4

If a polynomial equation of the form ax2 + bx + c = 0, a, b, and c constants
and x variable, has a solution, then the solution or solutions are given by the
quadratic formula :

Theorem 2 (Quadratic formula). Let a, b, and c be constants and x an unknown. If

ax2 + bx + c = 0

has a solution in x, then its solution or solutions are given by the formula

x =
−b ±

√
b2 − 4ac

2a
. (A1.1)

Some quick observations:

1. Because one cannot take the square root of a negative number, we see
that ax2 + bx + c = 0 can only have solutions if b2 ≥ 4ac.

2. The equation ax2 + bx + c = 0 will have one solution only if b2 = 4ac. If
b2 > 4ac, then it will have two solutions.

Examples:
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• x2 + 5x + 4 = 0. b2 = 25 > 16 = 4ac, so two solutions exist:

−5 ±
√

25 − 16

2
=

−5 ± 3

2
= −1 or − 4 .

• x2 + 2x + 1 = 0. Observe b2 = 4 = 4 = 4ac, so there is only one solution:
x = −b/(2a) = −2/2 = −1.

Lines A1.5
A line has the formula y = mx + b, where m and b are constants and x and y
are variables. This way of writing a line is called slope-intercept because m is
the slope of the line and b is the intercept (the point on the y axis at which the
line intersects the y axis). If m > 0, the line slopes up (i.e., rises as its graph is
viewed from left to right). If m < 0, the line slopes down (i.e., falls as its graph
is viewed from left to right).

Consider an expression of the form

Ax + By = C ,

where A, B 6= 0, and C are constants. This, too, is an expression for a line,
which we can see by rearranging:

By = −Ax + C ; hence, y = −A

B
x +

C

B
.

To summarize:

Rule 17. An expression of the form Ax + By = C is equivalent to the line y =
mx + b, where m = −A/B and b = C/B.

The line through two points

The line through two distinct points (x1, y1) and (x2, y2) is the line satisfying
the equations:

y1 = mx1 + b and y2 = mx2 + b .

Notice that if we subtract the first equation from the second, we get:

y2 − y1 = mx2 − mx1 = m(x2 − x1) ,

from which it follows that

m =
y2 − y1

x2 − x1
.

Substituting this back into the second equation, we get

y2 =
y2 − y1

x2 − x1
x2 + b .
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Hence,

b = y2 −
y2 − y1

x2 − x1
x2 =

y2(x2 − x1)

x2 − x1
− x2(y2 − y1)

x2 − x1
=

x2y1 − x1y2

x2 − x1
.

To conclude:

Rule 18. The line through the points (x1, y1) and (x2, y2) has

slope =
y2 − y1

x2 − x1
and intercept =

x2y1 − x1y2

x2 − x1
.

One might worry, in the last rule, about what happens if x1 = x2. In this
case the line is completely vertical (assuming the usual orientation of having y
on the vertical axis).

Parallel lines 3

If y = mx + b is a line and (x1, y1) is a point not on that line, then we can find
a line parallel to y = mx + b that passes through (x1, y1). Call this parallel line
y = Mx + B. A parallel line has the same slope, so M = m. This permits us to
find B by subtraction:

B = y1 − mx1 .

Logarithms A1.6
Often we need to solve equations of the form Ax = B, where A and B are
constants and x is the unknown to be solved for. This section explores, inter
alia, how such equations are solved.

The natural logarithm

For reasons that we won’t pursue here, the constant e, which I will define in a
moment, arises a lot in mathematics. This constant is defined to be4

e =
∞

∑
t=0

1

t!
, (A1.2)

where t!—read t factorial—is defined as

t! =

{
1 , if t = 0
1 × · · · × t , if t = 1, 2, . . .

.

3The math concept, not the album by Blondie.

4An alternative—but equivalent—definition is

e = lim n → ∞

(

1 +
1

n

)n

.

This is why the formula for continuous compound interest is expressed in terms of e.
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Calculations show that e ≈ 2.718281828. Because e is an irrational number, no
exact decimal representation exists for it.

The number e is called the base of the natural logarithm. Define the func-
tion exp(x) = ex .

Observe that limx→−∞ ex = 0 and limx→∞ ex = ∞. Moreover, it can be
shown that ex is increasing and continuous. Hence, for every y > 0, there
exists a unique x such that ex = y.

The function ln(·)

The function ln(·) is defined as the inverse of exp(·). That is,

ln
(

exp(x)
)
= ln (ex) = x .

The function ln(·) is called the logarithm or log.5 Because exp(x) is a posi-
tive number for all x, it follows that the function ln(·) is defined for positive
numbers only.

Recall that, for every y > 0, there exists a unique x such that ex = y. Taking
logs of both sides, we see that x = ln(y); that is, in this case, x is the log of y.

Proposition 27. ln(xy) = ln(x) + ln(y).

Proof: Recall there exists a unique number a and a unique number b such that
x = ea and y = eb. We thus have

ln(xy) = ln(eaeb)

= ln(ea+b) (Rule 3)

= a + b (ln(·) is the inverse of exp(·))
= ln(x) + ln(y) .

Proposition 28. ln(x/y) = ln(x)− ln(y).

Proof: Define a and b as in the previous proof. Observe

ln(x/y) = ln

(
ea

eb

)

= ln(eae−b) (Def’n of negative exponent)

= ln(ea−b) (Rule 3)

= a − b (ln(·) is the inverse of exp(·))
= ln(x)− ln(y) .

5To be technical, I should say the log with respect to e (the base).



146 Appendix A1: Algebra Review

Proposition 29. ln(xγ) = γ ln(x).

Proof: Define a as in the previous proof. Observe

ln(xγ) = ln ((ea)γ)

= ln(eaγ) (Rule 4)

= aγ (ln(·) is the inverse of exp(·))
= γ ln(x) .

Solving equations with exponents

Consider the motivating example, namely that we wish to solve the equation
Ax = B for x. Using Proposition 29, this is equivalent to solving

x ln(A) = ln(B) .

Dividing both sides by ln(A), we find

x =
ln(B)

ln(A)
. (A1.3)



System of Equations A2
Often in economics we need to know the solution to a system of equations. For
instance, we could have that demand is given by

D = α − βp

and supply is given by
S = η + γp ,

where D is the quantity demanded as function of price, p, S is the quantity sup-
plied as a function of price, and the Greek letters are non-negative constants. If
the market is in equilibrium, then demand and supply must be equal; that is,
the price must be such that D = S. To solve for that price, we need to solve the
system of equations above.

A Linear Equation in One
Unknown A2.1

Recall that if x is an unknown variable and A, B, and C constants (A 6= 0), then
the equation

Ax + B = C

is solved by the following procedure:

1. Subtract B from both sides of the equation (equivalently, add −B to both
sides). This yields

Ax = C − B .

2. Divide both sides of this last equation by A (equivalently, multiply both
sides by 1/A). This yields the solution,

x =
C − B

A
.

Observe this method be used even if, rather than x, we have some invertible
function of x, f (x). That is, consider the equation

A f (x) + B = C .

Employing the two steps just given yields

f (x) =
C − B

A
.
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Letting f−1(·) denote the inverse function, we can invert both sides to obtain

x = f−1

(
C − B

A

)

.

Two Linear Equations in Two
Unknowns A2.2

Consider the system

Ax + By = C and (A2.1)

Dx + Ey = F , (A2.2)

where A–F are constants and x and y are the two unknowns that we wish to
solve for. Recall, from Section A1.5, that expressions like (A2.1) and (A2.2) are
formulæ for lines. Hence, solving this system is equivalent to finding the point,
(x, y), at which those two lines cross.

Because of this equivalence, it follows that, if the lines dont cross—are
parallel—then no solution exists. Recall two lines are parallel if they have the
same slope. From Section A1.5, the slopes of these two lines are A/B and D/E,
respectively (recall Rule 17). Hence, if A/B = D/E, there is no solution.1

Assume A/B 6= D/E. A solution can, then, be found by the method of
substitution, which has the following steps:

1. Write the first equation, expression (A2.1) in slope-intercept form:

y = −A

B
x +

C

B
. (A2.3)

2. Substitute the righthand side of this last equation, expression (A2.3), for
y in the second equation of the system (i.e., for y in (A2.2)):

Dx + E

(

−A

B
x +

C

B

)

= F .

3. Combine terms in x:
(

D − EA

B

)

x = F − EC

B
;

or, simplifying,
BD − EA

B
x =

BF − EC

B
.

1To be technical, if it is also true that C/B = F/E, so the two lines have the same intercept, then
they are the same line. In which case, one could say that there are an infinite number of solutions,
because all points on this common line satisfy the two equations.
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4. Solve this last expression for x:

x =
BF − EC

BD − EA
. (A2.4)

5. Substitute for the x in expression (A2.3) using the righthand side of ex-
pression (A2.4):

y = −A

B
× BF − EC

BD − EA
+

C

B
;

simplifying,

y =
−A(BF − EC) + C(BD − EA)

B(BD − EA)

=
CD − AF

BD − EA
.

For example, recall the demand and supply equations with which we began
this appendix:

Q = α − βp and

Q = η + γp ,

where Q denotes the equilibrium quantity traded (recall, in equilibrium, de-
mand and supply are equal). The first equation is already in slope-intercept
form. Substituting into the second yields:

α − βp = η + γp .

Solving for p:

p =
α − η

β + γ
.

(Note, because prices must be non-negative, this tells us that there can be an
equilibrium only if α ≥ η.) Substituting the equilibrium price back into de-
mand, we find:

Q =
αγ + βη

β + γ
.
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Calculus A3
It is beyond a simple appendix to teach calculus fully. Here we seek to review
the main points. The intention is that it be understandable by anyone with a
good mastery of high school mathematics.

Calculus is divided into two parts. One, known as differential calculus, is
concerned with the rates at which things change. For instance, marginal cost,
MC, is the rate at which total cost changes as we increase production.

The second part, known as integral calculus, is concerned with areas under
curves. For instance, the area under the demand curve from 0 to x units is the
total benefit consumers derive from the x units.1

The Derivative A3.1
Think about speed (you may wish to read, first, the discussion on pages 37–38).
The speed at which you are traveling at a moment in time, t, is best estimated
by

speed =
D(t + h)− D(t)

h
,

where D(·) is your distance traveled as a function of the time spent traveling
and h is some very small increment of time (e.g., a small fraction of an hour,
such as a second). Indeed, the smaller we can make h, the better our estimate
will be. In fact, the ideal estimate is

speed = lim
h→0

D(t + h)− D(t)

h
,

where “lim” means the limit of that ratio as h approaches zero. For instance, if
D(t) = S × t, then

D(t + h)− D(t)

h
=

S × (t + h)− S × t

h
=

S × h

h
= S .

Clearly, the last expression doesnt depend on h, so the limit of it as h goes to
zero is S.

1As a technical note, there are some qualifications to this statement that I am skipping over.
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Definition. The derivative of a function f (·) at x is

lim
h→0

f (x + h)− f (x)

h
, (A3.1)

assuming that limit exists.

For our purposes in this text, we generally will assume that the limit exists.

Definition. A function is said to be differentiable if a derivative exists at every point
in its domain.2

Again, we will typically limit our attention to differentiable functions in
this text.

We denote derivatives in a number of ways. Specifically, the derivative of
f (x) can be denoted as f ′(x) (read “f prime of x”) or as d f (x)/dx. If we have
previously stated that y = f (x), then we can also denote the derivative of
f (·) as dy/dx. For some functions, such as cost functions, C(·), and revenue
functions, R(·), we use a prefix “M,” for marginal , to denote the derivative.
That is, for example, the derivative of C(·) is MC(·).

Properties of derivatives

Proposition 30. If f (x) = K, K a constant, for all x, then f ′(x) = 0 for all x.

Proof: OPT The numerator of the fraction in expression (A3.1) is always zero.

Proposition 31. If

b(x) = α f (x) + βg(x) ,

where α and β are constants and f (·) and g(·) are differentiable, then

b′(x) = α f ′(x) + βg′(x) .

Proof: OPT Observe expression (A3.1) can be written as

α
f (x + h)− f (x)

h
+ β

g(x + h)− g(x)

h
.

Now take limits.

Proposition 32 (Product rule). If b(x) = f (x)g(x), f (·) and g(·) differentiable,
then

b′(x) = f ′(x)g(x) + f (x)g′(x) .

2The domain of a function, recall, is the set of values for which the function is defined.



A3.1 The Derivative 153

Proof: OPT Observe

f (x + h)g(x + h)− f (x)g(x)

h
=

f (x + h)g(x + h)− f (x)g(x)

h

+
f (x + h)g(x)− f (x + h)g(x)

h
︸ ︷︷ ︸

+0

= g(x)
f (x + h)− f (x)

h
+ f (x + h)

g(x + h)− g(x)

h
.

Now take limits (note limh→0 f (x + h) = f (x)).

Proposition 33 (Chain rule). If b(x) = f
(

g(x)
)
, f (·) and g(·) differentiable, then

b′(x) = f ′
(

g(x)
)
g′(x).

Proof: OPT Observe

f
(

g(x + h)
)
− f

(
g(x)

)

h
=

f
(

g(x + h)
)
− f

(
g(x)

)

g(x + h)− g(x)
× g(x + h)− g(x)

h

=
f
(

g(x) + η
)
− f

(
g(x)

)

η
× g(x + h)− g(x)

h
,

where η = g(x + h)− g(x), so g(x+ h) = g(x) + η. Observe that limh→0 η = 0;
hence, the limit of the righthand-side of the last expression is f ′

(
g(x)

)
g′(x), as

claimed.3

Note the chain rule can be applied repeatedly.
The following two results are stated without proof.4

Theorem 3.

lim
h→0

eh − 1

h
= 1 .

Theorem 4.

lim
ε→0

ln(1 + ε)

ε
= 1 .

Proposition 34. The derivative of ex with respect to x is ex (i.e., dex/dx = ex).

Proof: OPT Observe

ex+h − ex

h
= ex eh − 1

h
,

3In case you were wondering, yes, for continuous functions, it is true that limx→z f (x)g(x) =
f (z)g(z).

4The curious can consult any decent calculus text. A specific citation is §2.6 of D.W. Jordan and
P. Smith’s Mathematical Techniques, 2nd ed., Oxford: Oxford University Press, 1997
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where I have used Rule 3 to factor out ex. The result then follows from Theo-
rem 3.

Proposition 35. The derivative of ln(x) with respect to x is 1/x (i.e., d ln(x)/dx =
1/x).

Proof: OPT Observe

ln(x + h)− ln(x)

h
=

1

h
ln

(
x + h

h

)

(Proposition 28)

=
1

h
ln

(

1 +
h

x

)

=
1

xε
ln(1 + ε) (making the substitution h = xε)

=
1

x
× ln(1 + ε)

ε
.

Because ε = h/x, it goes to zero as h goes to zero. Hence, the result follows
from Theorem 4.

Proposition 36. The derivative of xz with respect to x is zxz−1 (i.e., dxz/dx =
zxz−1).

Proof: OPT Let f (y) = ey and g(w) = z ln(w). Using Proposition 29, we have

ln(xz) = z ln(x) = g(x) .

Because exp(·) and ln(·) are inverse functions, we have

xz = exp
(

ln(xz)
)
= eg(x) = f

(
g(x)

)
.

The chain rule tells us that dxz/dx = f ′
(

g(x)
)
g′(x); hence,

d

dx
xz = eg(x) z

x
= xz z

x
= zxz−1 .

Note the first equality follows from Propositions 34 and 35, the second because
log and exp are inverse functions, and the last from Rule 3.
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Fundamentals of
Probability B1

This appendix reviews a number of fundamental concepts related to probabil-
ity.

A trial (alternatively, experiment or observation) is a situation in which one
outcome will occur out of a set of possible outcomes. For example, a flip of a
coin is a trial and its possible outcomes are heads and tails. Other examples
are:

• A toss of a die is a trial and its possible outcomes are the numbers one
through six.

• A toss of a pair of dice is a trial and its possible outcomes are the 36
possible combinations of the two die faces.

• The price of a barrel of crude oil a year from now is a trial and its out-
comes are all non-negative dollar amounts.

• Whether a given manufactured good is defective is a trial and its possible
outcomes are “defective” and “not defective.”

• The number of defective products in a production run of 1000 is a trial
and its possible outcomes are the integers between 0 and 1000 (inclusive).

We are often interested in the probability that a given outcome of a trial
will occur; that is, how likely that outcome is. For example, the probability of
the outcome heads when a coin is flipped is 1/2; that is, we believe that it is
equally likely the coin will land heads as it will tails. A belief, moreover, that
is supported by our past experiences with flipping coins. Similarly, if . . .

• . . . the trial is the toss of a die, then the probability of getting a “four” is
1/6.

• . . . the trial is the toss of a pair of dice, then the probability of getting a
“three” on the first die and a “two” on the second is 1/36.

• . . . the trial is the toss of a die-like cube, four sides of which are black and
two of which are white, then the probability of getting a black side is 2/3
(= 4/6)

The greater the probability, the more likely that outcome is. Hence, for
instance, in the last example the probability of getting a black side (2/3) is
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greater than the probability of getting a white side (1/3), reflecting that a black
side is twice as likely to appear as a white slide.

There are certain rules that probability over the outcomes of a trial must
satisfy. To illustrate these rules, let N denote the number of possible outcomes
in the trial, let n = 1, 2, . . . , N index the possible outcomes, let ωn denote the
nth outcome, and let P{ωn} denote the probability of the nth outcome. Then
the rules are

1. For each outcome n, P{ωn} ≥ 0; and

2. P{ω1}+ P{ω2}+ · · ·+ P{ωN} = 1. This can equivalently be expressed
as

N

∑
n=1

P{ωn} = 1 , (B1.1)

where ∑ means sum and the expression is read as “the sum from n = 1
to N of P{ωn}.”

The first rule is the requirement that probabilities be non-negative. The
second rule is the requirement that if we add up the probabilities of all the pos-
sible outcomes, then this sum must equal one. If the probability of an outcome
is zero, then its occurrence is impossible. If the probability of an outcome is
one, then its occurrence is certain.

How outcomes get assigned probabilities is a tricky question, and one which
has engendered much philosophical debate. For practically minded people,
however, there are essentially three methods of assigning probabilities to out-
comes. They are logically, experimentally, and subjectively.

Logic applies, for instance, in deciding that the probability of heads is 1/2:
It seems clear that heads and tails are equally likely, so—since probabilities sum
to one—P{heads} = 1/2.

Experimentally refers to probabilities that are drawn from data. For in-
stance, experimentally applies to how seismologists determine that there is a
.63 probability of a “major” earthquake in the San Francisco Bay Area within
the next thirty years:1 The geological record reveals that major quakes tend to
follow cycles. Currently, the Bay Area is in a stage of a cycle, which roughly
two out of three times in the past has ended with a major quake within the next
thirty years.

Subjectively is a kind way to refer to probabilities that are guesses. For ex-
ample, the probability that a brand new technology will prove popular in the
market place is not a number that is readily derived logically or from past ex-
perience. The executives of the company launching this new technology, how-
ever, must make guesses about the probability in order to make good decisions
about the product’s launch.

1The United States Geological Survey (USGS) website (http://earthquake.usgs.gov/regional/
nca/ucerf/) as of January , .
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Events B1.1
Often one is interested in combinations of outcomes known as events. An
event is a collection—or set—of outcomes that satisfy some criteria. An event is
said to occur if one of the outcomes that satisfies these criteria occurs. Suppose,
for instance, the trial is the roll of a die, then an example of an event would be
getting a number less than or equal to four. This event is the set of outcomes
1, 2, 3, and 4 and it occurs if a 1, 2, 3, or 4 is rolled. If the trial is the sexes of
a couples first two children, then an event is “the first child is a girl,” which
is the set of outcomes (girl, girl) and (girl, boy). Another event for this trial is
“the sexes of the two children are the same,” which is the set of outcomes (girl,
girl) and (boy, boy).

As a rule, I will denote events by capital italic letters (e.g., A, B, etc.).
The probability of an event is the sum of the probabilities of the outcomes in

that event. For example, the probability of rolling a number less than or equal
to 4 is

2

3
= P{1}+ P{2}+ P{3}+ P{4} .

The probability of the first of a couple’s two children being a girl is

1

2
= P{girl, girl}+ P{girl, boy} .

Formally, the probability of an event A can be expressed as

P(A) = ∑
ω∈A

P{ω} , (B1.2)

where “ω ∈ A” means ω is one of the outcomes that make up A and the
expression is read as “the sum over outcomes in A of the probabilities of those
outcomes.”

Often one is interested in comparing the probabilities of events. Equality
and contained in are two relations between events commonly of interest. Two
events, A and B, are equal—denoted A = B—if they contain the same out-
comes. From the definition of the probability of an event, it follows that

Proposition 37. If A and B are events and A = B, then P(A) = P(B).

Note the converse is not true; that is, the fact that two events have the same
probability does not imply they are the same event.

One event, A, is contained in another event, B—denoted A ⊆ B—if every
outcome in A is also in B.2 For example, the event “both of a couple’s two
children are girls” is contained in the event “their first child is a girl.” Or, for
instance, the event “an even number is rolled” is contained in the event “a
number greater than or equal to two is rolled.” If A ⊆ B, every outcome in A is
also in B, but B may contain outcomes that are not in A; hence, it follows that

2You may have previously seen the term “subset of” used for “contained in.”
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Proposition 38. If A and B are events and A ⊆ B, then P(A) ≤ P(B).

Again, the converse is not true; that is, P(A) < P(B) does not imply that A is
contained in B. Proposition 38 does, however, imply that if P(A) > P(B), then
A cannot be contained in B.

Although Proposition 38 may seem obvious, the truth is that studies have
shown that many people make mistakes in this area. For example, suppose I
tell you that Linda grew up in a politically liberal household in San Francisco
and that Linda herself was involved with a number of progressive causes while
she was an undergraduate at Berkeley. Which of the following two statements
is more likely to be true about Linda?

1. Linda is a bank teller; or

2. Linda is a feminist and a bank teller.

Most people choose statement 2, but that is incorrect:3 the event Linda is a fem-
inist and a bank teller is contained in the event Linda is a bank teller (feminist
or not); or, to put it differently, all feminist bank tellers are bank tellers, but not
all bank tellers are feminist bank tellers. So, from Proposition 38, we know that
statement 1 is more likely to be true than statement 2.

Often we want to know what the probability is that an event will not hap-
pen. This is equivalent to asking what is the probability that one of the out-
comes that do not make up the event will occur. If A is an event, let Ac be
the event made up of the outcomes that do not make up A (Ac is called the
complement of A). From (B1.1), we know that

1 =
N

∑
n=1

P{ωn}

= ∑
ω∈A

P{ω}
︸ ︷︷ ︸

sum over events in A

+ ∑
ω∈Ac

P{ω}
︸ ︷︷ ︸

sum over events not in A

= P(A) + P(Ac) .

This, in turn, establishes

Proposition 39. The probability that an event A does not occur (equivalently, that
event Ac does occur) is 1 − P(A)

For example, the probability that “at least one child is a boy in a pair of
children” is most easily calculated by recognizing that this event is the comple-
ment of the event “both children are girls.” The probability that “both children
are girls” is 1/4, so the probability that “at least one child is a boy” is 3/4.

Sometimes we want to know the probability that two events will both occur.
The event that both events occur is, itself, an event. If A and B are two events,

3This is known as the conjunctive fallacy .



B1.1 Events 161

then the event that they both occur is denoted A ∩ B (read “A intersection B”).
An outcome is contained in A ∩ B if it is in both A and B. In other words, every
outcome in A ∩ B is in A and it is in B. It follows that

A ∩ B ⊆ A and A ∩ B ⊆ B .

From Proposition 38, we can therefore conclude that

Proposition 40. If A and B are two events, then the probability of their both occur-
ring, P(A ∩ B), does not exceed the probability that A occurs nor does it exceed the
probability that B occurs (i.e., P(A ∩ B) ≤ P(A) and P(A ∩ B) ≤ P(B)).

That is, the probability of both events occurring cannot exceed the proba-
bility of one event occurring (and the other event either occurring or not oc-
curring). This is another way to view the “Linda” problem above. One event
is “Linda is a bank teller” and another is “Linda is a feminist.” Statement 2—
“Linda is a feminist bank teller”—is the intersection of these two events; hence,
from Proposition 40, it follows that the probability of statement 2 cannot exceed
the probability of statement 1.

Sometimes two events cannot possible happen together (e.g., the event “the
next person I meet is a man” and the event “the next person I meet is preg-
nant”).4 We denote this by writing A ∩ B = ∅, where ∅–called the null set—
denotes the “event” that no outcome occurs. Since some outcome must occur,
the null set represents an impossible event.5 Reflecting the idea that ∅ is an
impossible event, we define P(∅) = 0.

The probability of A ∩ B is calculated by summing up the probabilities of
all outcomes common to A and B (i.e., by employing formula (B1.2)—except
substituting A ∩ B for A in that expression).

In some situations, we want to know the probability that either event A,
event B, or both will occur. That is, we want to know the probability of an
outcome occurring that is contained in either A, B, or both. This defines a new
event, which we denote as A ∪ B (read “A union B”). For example, if the trial
is the roll of a die, then the union of the events “an even number is rolled” and
“a prime number is rolled”6 is the event “a number larger than one is rolled,”
since the outcome one is the only outcome not in at least one of the two events
(the even numbers are 2, 4, and 6, while the prime numbers are 2, 3, and 5).
Note that if an outcome is common to both events it is only counted once in
their union. For example, the union of “an even number is rolled” and “a
prime number is rolled” is {2, 3, 4, 5, 6} and not {2, 2, 3, 4, 5, 6}. Because every
outcome in A must, by definition, be in A ∪ B, it follows from Proposition 38
that

4Bad Arnold Schwarzenneger movies notwithstanding.

5The null set is sometimes referred to as the empty set .

6Recall a prime number is a whole number greater than one that is divisible only by one and
itself (e.g., 3 is prime—it is divisible by 1 and 3 only—whereas 4 is not prime—it is divisible by 2
in addition to being divisible by 1 and 4).
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Proposition 41. If A and B are two events, then the probability of one, the other,
or both occurring, P(A ∪ B), is at least as great as the probability of either one alone
occurring. That is, P(A) ≤ P(A ∪ B) and P(B) ≤ P(A ∪ B).

That is, for example, the probability of rolling an even number cannot exceed
the probability of rolling an even number, or a prime number, or both.

The event A ∪ B may contain outcomes that are common to both A and B.
Since we don’t double count such outcomes it follows that

Proposition 42. If A and B are events, then P(A ∪ B) ≤ P(A) + P(B).

To see why Proposition 42 is true, observe

P(A ∪ B) = ∑
ω∈A only

P{ω}+ ∑
ω∈A∩B

P{ω}+ ∑
ω∈B only

P{ω}

≤ ∑
ω∈A only

P{ω}+ ∑
ω∈A∩B

︸ ︷︷ ︸

P(A)

+ ∑
ω∈A∩B

P{ω}+ ∑
ω∈B only

P{ω}
︸ ︷︷ ︸

P(B)

= P(A) + P(B) .

From this last expression, we see that the difference between P(A ∪ B) and
P(A) + P(B) is that the latter counts ∑ω∈A∩B P{ω} = P(A ∩ B) twice. It fol-
lows, therefore, that we can get the correct value for P(A ∪ B) by subtracting
P(A ∩ B) from P(A) + P(B). We can, thus, conclude

Proposition 43. If A and B are two events, then the probability of one, the other, or
both occurring, P(A ∪ B), is given by the formula:

P(A ∪ B) = P(A) + P(B)− P(A ∩ B) .

Two events are mutually exclusive if they cannot both occur; that is, if
A ∩ B = ∅. For example, the events “roll an even number” and “roll an odd
number” are mutually exclusive (no number is both even and odd). Given that
P(∅) = 0, it follows from Proposition 43 that

Proposition 44. If A and B are two mutually exclusive events, then P(A ∪ B) =
P(A) + P(B).



Conditional
Probability B2

Often we want to know the probability that one event will occur given that we
know another event has occurred or will occur. For example, what is the prob-
ability that the next unit off the assembly line will be defective given that two
of the last one hundred were defective? Or what is the probability that it will
rain this afternoon given that it is cloudy this morning? These probabilities are
called conditional probabilities and they are denoted P(A|B)—read “probabil-
ity of A conditional on B”—where B is the event we know has occurred or will
occur and A is the event in whose probability we are interested. For instance,
suppose someone asked what is the probability that it will rain this afternoon
given that (conditional on) its being cloudy this morning? We would denote
this as

P(rain in afternoon|cloudy in morning) .

To better understand conditional probability, let the trial be the roll of a die
and let A be the event “a six is rolled”1 and let B be the event “an even number
is rolled.” Suppose I secretly rolled the die and told you that I had rolled an
even number (i.e., B has occurred). What would you imagine the probability
of my having rolled a six to be (i.e., what is P(A|B))? You would probably
reason as follows: There are three even numbers—2, 4, and 6—each of which is
equally likely; hence, the probability of a six having been rolled given that the
number rolled is even is 1/3. This reasoning is correct. Now suppose I asked
you what the probability that I rolled a five is given that I have rolled an even
number (i.e., A is now “a five is rolled”). You would respond zero, because five
is not even and, so, is an impossible event given that the number rolled is even.
Finally, suppose I reversed the situation and told you that I had rolled a six and
asked you what the probability is that I have rolled an even number (i.e., A is
now “an even number is rolled” and B is “a six is rolled”). You would respond
one, because six is an even number.

You should be able to verify that each of the probabilities you calculated
above satisfy the following rule:

P(A|B) = P(A ∩ B)

P(B)
. (B2.1)

1This is also an outcome. Note an event can contain a single outcome. Some authors refer to
events made up of single outcomes as simple events.
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This is, in fact, the formula for conditional probability (provided P(B) > 0).2

Although the examples of conditional probability given above were triv-
ial, conditional probability is often harder than it seems. For example, sup-
pose I asked you what is the probability that a couple with two children has
at least one boy given that you know they have at least one girl. Most peo-
ple’s intuition is that the answer is 1/2. This, however, is wrong. To see why,
let A denote the event “at least one child is a boy” and let B denote “at least
one child is a girl.” The goal is to calculate P(A|B). Writing out B in terms
of the outcomes it contains, we see that it is (girl, girl), (boy, girl), and (girl,
boy). Hence P(B) = 3/4. Similarly writing out A, we see that it is the out-
comes (boy, boy), (girl, boy), and (boy, girl). Hence A ∩ B is the outcomes
(girl, boy) and (boy, girl); hence P(A ∩ B) = 1/2. Using (B2.1), we obtain
P(A|B) = 1/2 ÷ 3/4 = 2/3; that is, the probability of at least one boy given
that you know the couple has at least one girl is 2/3. The reason most peoples
intuition fails is that they incorrectly reason that, since one child is a girl, they
wish to determine the probability that the other child is a boy. What they are
forgetting is that there are three ways for a couple to have at least one girl, two
out of three of which involve the couple also having one boy.

In Section B1.1, we saw that the unconditional probability (i.e., given no
additional information) of at least one of a couples two children being a boy
was 3/4. Given the information that at least one child is a girl, we saw that the
conditional probability that they have at least one boy is 2/3, which is less than
3/4. What has happened is that, upon receiving the information that at least
one child was a girl, we revised or updated our beliefs about the probability
that the couple has at least one boy. In general, we say that a person is revising
or updating his or her beliefs about an event when he or she uses new infor-
mation to calculate a conditional probability. The probability of the event prior
to receiving the information is called the prior probability and the probability
of the event after receiving the information is called the posterior probability.
Note that the posterior probability need not be lower than the prior probability:
If, for instance, the event was the probability that a couple with two children
has two boys, then you would update your beliefs upon learning that at least
one of the children was a boy from 1/4 (the prior probability) to 1/3 (the poste-
rior probability). As you will see, calculating revised or updated beliefs is one
of the primary uses of conditional probability.

The rules given in Appendix B1 also hold true for conditional probabilities:

Proposition 45. Let ω denote an arbitrary event and let A, B, and C denote events.
Assume P(B) > 0. Then the following are all true.

(i) P{ω|B} ≥ 0 and P(A|B) ≥ 0.

(ii) ∑ω∈B P{ω|B} = 1.

(iii) If A = C, then P(A|B) = P(C|B).

2The case in which P(B) = 0 is of no interest, because, then, P(A|B) is the probability of A
given that something impossible has or will occur; that is, it is a nonsensical quantity.
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(iv) If A ⊆ C, then P(A|B) ≤ P(C|B).

(v) The probability that event A does not occur conditional on B is 1 − P(A|B);
that is, P(Ac|B) = 1 − P(A|B).

(vi) P(A ∩ C|B) ≤ P(A|B) and P(A ∩ C|B) ≤ P(A|B).

(vii) P(A ∪ C|B) ≥ P(A|B) and P(A ∪ C|B) ≥ P(A|B).

(viii) P(A ∪ C|B) = P(A|B) + P(C|B)− P(A ∩ C|B), from which it follows that

(a) P(A ∪ C|B) ≤ P(A|B) + P(C|B); and

(b) P(A ∪ C|B) = P(A|B) + P(C|B) if A ∩ B and C ∩ B are mutually
exclusive events.

For future reference, observe that we can rewrite expression (B2.1) in the
following ways:

P(A ∩ B) = P(A|B)× P(B) ;

or, reversing the roles of A and B,

P(A ∩ B) = P(B|A)× P(A) . (B2.2)

Independence B2.1
In the previous section we noted that the difference between P(A) and P(A|B)
reflected what learning that event B had or would occur told us about the
probability that event A would occur. If P(A) < P(A|B), then learning B
caused us to increase the probability with which we believed A would occur.
If P(A) > P(A|B), then learning B caused us to decrease the probability with
which we believed A would occur. What if P(A) = P(A|B)? Then B tells us
nothing about the probability that A will occur. In this last case, we say that A
and B are independent events.

If A and B are independent, then

P(A) = P(A|B) = P(A ∩ B)

P(B)
,

where the second equality comes from expression (B2.1). Ignoring the middle
term, if we multiply both sides of this last expression by P(B), we obtain

P(A)× P(B) = P(A ∩ B) .

From this, we can conclude

Proposition 46. If A and B are independent events, then P(A ∩ B) = P(A) ×
P(B).
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Be careful! Proposition 46 applies only to independent events. If A and B are
not independent events, then P(A) × P(B) 6= P(A ∩ B). A common mistake
is to presume two events are independent, when they are not, and to then cal-
culate the probability of their both occurring as the product of each occurring.
For example, suppose there are two safety systems, A and B. Suppose that the
probability of A failing is 1/1000 and the probability of B failing is 1/1000. Is
the probability of disaster (both failing) 1 in 1 million? Probably not. If, for in-
stance, A can fail due to a power surge and so can B, then a single power surge
might cause both to fail simultaneously. That is, the probability of both systems
failing is greater than 1 in a million because they are not truly independent.

Bayes Theorem B2.2
In this section, we study one of the most important rules for updating proba-
bilities, namely Bayes Theorem. To do so, though, we need to consider some
additional definitions.

Let Ω (read “omega”) be the set of all possible outcomes. That is, every
outcome is contained in Ω (i.e., ω ∈ Ω for all outcomes ω). From this, it follows
that every event is also contained in Ω (i.e., A ⊆ Ω for all events A). Finally,
because all outcomes are in Ω, it follows from expression (B1.1) on page 158
that P(Ω) = 1 (which can be interpreted as “something is certain to happen”).

We say that a list of events are exhaustive if collectively they contain all
the possible outcomes. This is denoted by A1 ∪ A2 ∪ · · · ∪ AT = Ω, where At

denotes one of T events. It can be shown that the following is true:

Proposition 47. Let A1, . . . , AT , and B be events. Suppose that A1, . . . , AT are
mutually exclusive and exhaustive, then

P(B) = P(A1 ∩ B) + · · ·+ P(AT ∩ B) .

Recall expression (B2.2); that is, P(A ∩ B) = P(B|A)× P(A). From that fact
and Proposition 47, it follows that

Proposition 48 (Law of Total Probability). Let A1, . . . , AT , and B be events. Sup-
pose that A1, . . . , AT are mutually exclusive and exhaustive, then

P(B) = P(B|A1)× P(A1) + · · ·+ P(B|AT)× P(AT) . (B2.3)

Let A1, . . . , AT be mutually exclusive and exhaustive events. From the defini-
tion of conditional probability (i.e., expression (B2.1) above), we know that

P(At|B) =
P(At ∩ B)

P(B)
. (B2.4)

We also know that P(At ∩ B) = P(B|At)× P(At) and that we can write P(B)
using the Law of Total Probability (i.e., using the formula (B2.3) above). Substi-
tuting these two expressions into (B2.4) as appropriate, we obtain:
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Theorem 5 (Bayes Theorem). Let A1, . . . , AT , and B be events. Suppose that
A1, . . . , AT are mutually exclusive and exhaustive and that P(B) > 0, then for
any event At, we have

P(At|B) =
P(B|At)× P(At)

P(B|A1)× P(A1) + · · ·+ P(B|AT)× P(AT)
. (B2.5)

Example 25 [Paradox of the Three Prisoners]: Once upon a time, there
were three prisoners: 1, 2, and 3. Each prisoner was kept in a separate
cell and the prisoners could not communicate with each other. The pris-
oners knew that in the morning one of them would be executed, while the
other two would be set free. Although the authorities knew which prisoner
would be executed, the prisoners did not. Suppose each prisoner assumed
she had a 1/3 probability of being executed. Suppose that Prisoner 3 could
not wait the night to find out whether she was to be executed. She called a
guard over and asked him “am I to be executed?”

The guard replied, “you know that tradition forbids me from telling
you that.”

“Well, then,” said Prisoner 3, “could you at least tell me which of the
other two prisoners will be set free?”

“Since there is no information in that, I dont see why not. Prisoner 1
will be set free,” said the guard, who never lies.

Prisoner 3 sat back in her cell and reflected, “well, then, it’s between
Prisoner 2 and me. But, wait, this means I have a 50% chance of being
executed! Woe is me!” As Prisoner 3 sank into depression, it suddenly
occurred to her that had the guard told her Prisoner 2 would be set free,
she still would have calculated her probability of being executed as being
1/2. “Wait a minute,” she thought, “that means that regardless of what the
guard told me, my probability of being executed was 1/2; which means
that my initial probability of being executed should have been 1/2 instead
of 1/3 . I must have made a mistake somewhere!”

Indeed, Prisoner 3 has made a mistake. To see what her mistake was, as well
as what the true probability of her execution is, let’s employ Bayes Theorem.
To do so, we need one more assumption: Suppose that if both Prisoners 1 and
2 are to be set free, then the probability is 1/2 that the guard tells Prisoner 3
that Prisoner 1 will be released and the probability is 1/2 that the guard tells
Prisoner 3 that Prisoner 2 will be released. In terms of the formula above, we
can think of At as the event “Prisoner t will be executed” and we can think of
B as the event “Prisoner 3 is told Prisoner 1 will be set free.” The question we
seek to answer is what is the probability that Prisoner 3 is to be executed given
that Prisoner 1 is to be set free; that is, what is P(A3|B)? The data we have been
given to answer this question can be expressed as

1. P(A1) = P(A2) = P(A3) = 1/3 (the unconditional probability of Prisoner
t’s being executed is 1/3).

2. P(B|A1) = 0 (the guard never lies, so he won’t say Prisoner 1 is to be set
free if he is really doomed).
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3. P(B|A2) = 1 (if Prisoner 2 is to be executed, the Prisoner 3 will certainly
be told that Prisoner 1 will be set free).

4. P(B|A3) = 1/2 (if Prisoner 3 is to be executed, then, by assumption, the
probability that the guard tells Prisoner 3 that Prisoner 1 is to be set free
is 1/2).

Inserting these data into Bayes Theorem, we have that P(A3|B)—the probabil-
ity that Prisoner 3 will be executed given she was told Prisoner 1 was to be set
free—equals

P(A3|B) =
1
3 × 1

2

0 × 1
3 + 1 × 1

3 + 1
2 × 1

3

=
1

3
.

That is, having learned that Prisoner 1 will be set free, the probability that Pris-
oner 3 will be executed is 1/3. As the guard said, the knowledge that Prisoner
1 will be freed is uninformative with respect to whether Prisoner 3 will be exe-
cuted (note this also means that it is independent of whether Prisoner 3 will be
executed). Prisoner 3’s mistake was to forget that the guard would always tell
her that one of her fellow prisoners would be released regardless of who was
to be executed. In other words, asking which of her fellow prisoners will be
released is equivalent, in terms of estimating her own probability of execution,
to asking will one of her fellow prisoners be released. Since only one prisoner
will be executed, this second question cannot yield an informative response;
hence, neither can her original question.

The Paradox of the Three Prisoners illustrates one way Bayes Theorem can
be useful; namely showing that what seems like information is not really in-
formation. Another way Bayes Theorem can be useful is in showing that what
seems uninformative is actually informative; as the following example illus-
trates.

Example 26 [The Monty Hall Problem]: This example is based on an old
American television game show called Let’s Make a Deal, which was hosted
by a man named Monty Hall.3 At one stage of the game, a contestant is
asked to choose among three closed doors (numbers 1, 2, and 3). Behind
one of the doors is a valuable prize (e.g., a new car). Behind two of the doors
are worthless joke prizes (e.g., goats). The contestant does not know which
door conceals the valuable prize, but he does know that the probability
that the valuable prize is behind any given door is 1/3. After choosing one
of the three doors, Monty Hall has one of the unchosen doors opened to
reveal one of the two joke prizes (Monty Hall knows which door conceals
the valuable prize). Monty Hall then asks the contestant if he would like
to switch his choice from the door he chose originally to the other closed
door. If the contestant switches, then he gets the prize behind the door to
which he switches. If he doesnt switch, then he gets the prize behind the
door he originally chose. Assuming the contestant wants to maximize his

3I make no claim that the actual game show was played in the manner described here. This is
simply a well-known puzzle.
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probability of winning the valuable prize, should he switch or should he
stay with the door he originally chose?

Most people when confronted with this problem answer that it doesn’t
matter whether the contestant switches or not—the probability of winning the
valuable prize will be the same; that is, seeing a door opened is uninformative.
This, however, is incorrect: By switching the contestant doubles his probability
of winning! Let’s use Bayes Theorem to see why. Before doing so, we need one
further assumption: if both the doors that the contestant did not select have
joke prizes behind them, then Monty Hall is equally likely to open one as the
other (remember Monty Hall only opens an unchosen door and only a door
that has a joke prize behind it). For concreteness, suppose that the contestant
chooses door #1 and Monty Hall opens door #2 to reveal a joke prize. Let At

denote the event “the valuable prize is behind door number t” and let B denote
the event “Monty Hall opens door #2.” We want to know the probabilities that
the valuable prize is behind door #1 or door #3 (since Monty Hall opens door
#2 to reveal a joke prize, we know the valuable prize is not there); that is, we
want to know P(A1|B) and P(A3|B). Indeed, since P(A1|B) = 1P(A3|B), we
need to determine only P(A3|B). The data we are given are

1. P(A1) = P(A2) = P(A3) = 1/3.

2. P(B|A1) = 1/2 (Monty is equally likely to open door #2 as he is to open
#3 if both conceal joke prizes).

3. P(B|A2) = 0 (Monty only opens a door that has a joke prize behind it).

4. P(B|A3) = 1 (same reason).

Putting all this into Bayes Theorem yields

P(A3|B) =
1 × 1

3
1
2 × 1

3 + 0 × 1
3 + 1 × 1

3

=
2

3
;

hence, P(A1|B) = 1/3. As claimed, the contestant doubles his probability of
winning the valuable prize by switching.
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Random Variables
and Expectation B3

Often we are interested in the payoffs associated with different outcomes. For
instance, suppose you and a friend decided to wager a dollar on the outcome
of a coin toss: heads you win a dollar; tails you lose a dollar. From your per-
spective, the outcome heads is associated with the payoff $1 and the outcome
tails is associated with the payoff −$1. Traditionally, such payoffs are called
random variables and are denoted as functions of outcomes. For example, if
x(·) is a function that associates each outcome, ω, with a payoff, then, in the
coin-toss example, one would write x(heads) = 1 and x(tails) = −1.

In general, one can dispense with keeping track of the outcomes; thus, in-
stead of writing x(ω), one can just write x; and instead of writing “the proba-
bility of getting x(ω) is P{ω},” one can just write “the probability of getting x
is P(x).” In a sense, one can just think of payoffs as being outcomes.

The payoffs, since they are numbers, can be ordered from smallest to largest.
Hence, if there are N possible payoffs, we would list them as x1, x2, . . . , xN,
where it is to be understood that if m < n, then xm < xn.

Taking advantage of this ordering, we can write the probability P(xn) as
just pn. If there are N possible payoffs, then the list of probabilities p1, . . . , pN

is called the density associated with the random variable (payoff) x.

Expectation B3.1
When faced with an uncertain situation, say the gamble described in the pre-
vious section, we are often interested in knowing how much we can expect to
win or how much we might win on average. This notion is captured in the con-
cept of expectation. The expectation of a random variable is denoted E{x} and is
defined as

E{x} = p1 × x1 + · · ·+ pN × xN (B3.1)

for a random variable with N possible payoffs. In words, the expectation of a
random variable is the sum, over the possible outcomes, of the product of each
payoff and its probability.

One way to think about expectation is that the expectation of x is exceed-
ingly close to your average1 payoff if you were to repeat the uncertain situation

1Recall the (arithmetic) average of a set of numbers is their sum divided by the number of
numbers in the set. For example, the average of 1, 3, and 8 is 4 (= (1+ 3 + 8)/3).
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a large number of times.2 Another way to think about expectation is that the
expectation of x is the “best guess” as to value that x will take; where “best
guess” means the one with the least error.

As an example, the expected value of the gamble in which you receive $1 if
a coin lands heads but you pay $1 (receive −$1) if the coin lands tails is

1

2
× (−1) +

1

2
× 1 = 0

dollars.
As a second example, suppose that your ice cream parlor makes $2000 on

a sunny day and $1000 on a rainy day. Suppose that the probability of rain
tomorrow is 1/5, then you can expect to make

1

5
× 1000 +

4

5
× 2000 = 1800

dollars tomorrow.
One can also take the expectation of a function of a random variable. For

instance, suppose that you bet $1000 on the toss of a coin: heads you win $1000
and tails you lose $1000. Suppose that you must pay 14% income tax on your
winnings and you cannot deduct your loses from your income taxes. Then,
from your perspective, you care about the following function of x:

f (x) =

{
x , if x ≤ 0
.86x , if x > 0

, (B3.2)

because it gives your winnings in after-tax dollars. Your expected after-tax win-
nings are

E{ f (x)} =
1

2
× (−1000) +

1

2
× .86 × 1000 = −70

dollars.
The general rule for the expectation of a function of a random variable is

E{ f (x)} = p1 × f (x1) + p2 × f (x2) + · · ·+ pN × f (xN) . (B3.3)

Note that it is generally not true that E{ f (x)} = f (E{x}); that is, it is gen-
erally not true that the expectation of the function equals the function of the
expectation.

Some standard definitions concerning random variables and their expecta-
tions:

• The mean of a random variable is its expectation. That is, the mean of x
is E{x}.

2In fact, it can be proved that as the number of replications tends to infinity, the expectation will
be arbitrarily close to the average you actually get. This is called the Law of Large Numbers.
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• The variance of a random variable is the expectation of its deviation from
its mean. That is, the variance of x—denoted Var(x)—is

Var(x) = p1 ×
(
x1 − E{x}

)2
+ · · ·+ pN ×

(
xN − E{x}

)2
.

• The (population) standard deviation of a random variable is the square

root of its variance; that is, the standard deviation of x is
√

Var(x).

Distributions B3.2
The distribution of a random variable x is a function that gives the probability
that x ≤ y for each value y. If F(·) is the distribution function for the random
variable x, then F(y) is defined as

F(y) = ∑
{n|xn≤y}

pn ,

where {n|xn ≤ y} is read as “the set of indices such that the value xn is less
than or equal to y.” For example, if

x ∈ {1, 2, 4, 7, 10} and pn =
n

15
,

then

F(3) =
1

15
+

2

15
=

1

5
;

F(6.99) =
1

15
+

2

15
+

3

15
=

2

5
; and

F(7) =
1

15
+

2

15
+

3

15
+

4

15
=

2

3
.

Since, in this example, it is impossible to get an x < 1, F(y) = 0 for all y < 1.
Since, in this example, we must get an x ≤ 10, F(y) = 1 for y ≥ 10.

∫
dx Continuous Distributions

Although so far we have defined probability in terms of discrete
outcomes, we can define them in terms of continuous outcomes.
Basically, this means considering distribution functions that are dif-
ferentiable. Let G(·) be a differentiable distribution function. The
derivative of a differentiable distribution function is called the den-
sity function. Let g(·) denote the density function; that is,

g(y) =
d

dy
G(y) .
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Because integration is the “inverse” of differentiation, we know

G(y) =
∫ y

xmin

g(x)dx ,

where xmin is the smallest possible value of the random variable x.

For random variables with differentiable distribution functions, their
mean and variance are defined, respectively, as:

E{x} =
∫ xmax

xmin

xg(x)dx ; and

Var(x) =
∫ xmax

xmin

(
x − E{x}

)2
g(x)dx ,

where xmax is the largest possible value of x.

Two commonly used differentiable distribution functions are the
normal and the uniform.

• The normal distribution has a density function given by

√

1

2σπ
exp

(

− 1

2σ2
(x − µ)2

)

,

where σ (read “sigma”) is the standard deviation of x, µ (read
“mu”) is the mean, π is the constant pi (i.e., approximately
3.1416), and where exp(z) means the base of the natural log-
arithm (i.e., e ≈ 2.7183) raised to the zth power. A normally
distributed random variable has a range from −∞ to ∞. The
probability of drawing such an x less than or equal to a given
y is

∫ y

−∞

√

1

2σπ
exp

(

− 1

2σ2
(x − µ)2

)

dx .

This expression does not have a closed-form solution.

• The uniform distribution from 0 to Y has a density of 1/Y.
The mean of a random variable distributed uniformly from 0
to Y is Y/2. Its variance is Y2/12. If x is distributed uniformly
on between 0 and Y, then the probability of drawing an x less
than or equal to a given y, 0 ≤ y ≤ Y, is

∫ y

0

1

Y
dx =

y

Y
.
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